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Abstract. In recent years, considerable efforts have been directed to-
ward investigating the large amount of public transaction data in promi-
nent cryptocurrencies. Nevertheless, aside from Bitcoin and Ethereum,
little efforts have been made to investigate other cryptocurrencies, even
though the market now comprises thousands, with more than 50 exceed-
ing one billion dollars of capitalization, with some of them sporting inno-
vative technical solutions and governance. This is the case for Polkadot,
a relatively new blockchain that promises to solve the shortcomings in
scalability and interoperability that encumber many existing blockchain-
based systems. In particular, Polkadot relies on a novel multi-chain con-
struction that promises to enable interoperability among heterogeneous
blockchains.

This paper presents the first study to formally model and investigate user
transactions in the Polkadot network. Our contributions are multifolds:
After defining proper and pseudo-spam transactions, we built the trans-
action graph based on data collected from the launch of the network, in
May 2020, until July 2022. The dataset consists of roughly 11 million
blocks, including 2 million user accounts and 7.6 million transactions.
We applied a selected set of graph metrics, such as degree distribution,
strongly /weakly connected components, density, and several centrality
measures, to the collected data. In addition, we also investigated a few
interesting idiosyncratic indicators, such as the accounts’ balance over
time and improper transactions. Our results shed light on the topology
of the network, which resembles a heavy-tailed power-law distribution,
demonstrate that Polkadot is affected by the rich get richer conundrum,
and provide other insights into the financial ecosystem of the network.
The approach, methodology, and metrics proposed in this work, while
being applied to Polkadot, can also be applied to other cryptocurren-
cies, hence having a high potential impact and the possibility to further
research in the cryptocurrency field.

Keywords: Polkadot - Multi-chain Blockchain - Cryptocurrency - Graph
Analysis - Metrics - Network Science - Decentralization - DeFi.
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1 Introduction

Over the years, blockchain-based cryptocurrencies have witnessed rapid accelera-
tion in terms of protocols evolution, market capitalization growth, and widespread
public and business acceptance. Consequently, considerable efforts have been di-
rected toward investigating the large amount of transactions data in cryptocur-
rency blockchains. Many complex systems are modeled using network science
(or complex network theory) in various applications, such as computer networks,
social networks, linguistics and even biology. By applying graph analysis to cryp-
tocurrency networks, researchers were able to discover groundbreaking insights,
uncover interesting properties, and characterize major activities on these sys-
tems. When these techniques have been applied to cryptocurrencies, some works
revealed security concerns manifested in the form of unusual economical patterns.
For instance, in Bitcoin, Ron and Shamir (2013) [20] discovered abnormally long
and “fork-merge” chains in the transaction graph, which led to the identification
of some malicious entities possibly abusing Bitcoin for money laundering, fraud,
or other illegal activities. Graph analysis also allows identifying the topological
properties of the network; where most cryptocurrency networks are usually found
to exhibit small-world structures and power-law distributions [7]. Other studies
used clustering algorithms to find hidden relations between different accounts
to deanonymize users [14] and investigate unknown transaction patterns [4].
So far, all these techniques have been applied only to the two most diffused
cryptocurrencies, Bitcoin and Ethereum. However, the current cryptocurrency
landscape includes several other projects that, for capitalization and architec-
tural advantages, certainly deserve the same level of attention. Moreover, these
recent proposals also introduce elements of novelties, since they try to address
the technical limitations the first proponents have discovered with time, as well
as novel governance mechanisms. These latter features, in particular, require to
be investigated with scientific method.

In this study, we investigate Polkadot, a recent cryptocurrency launched in
May 2020. Despite its recent mint, it has successfully secured a spot amongst
the top 10 cryptocurrencies by market capitalization'. Polkadot is known for
being a fully “sharded” blockchain, whose design principles are based on sharding
[18,23]—a database splitting technique—that enables multiple chains to process
their transactions in parallel. Each blockchain shard is called a “parachain” which
is connected to the Relay Chain. Parachains are heterogeneous blockchains that
can be customized per project needs; for example, to host smart contracts or
bridges [24]. The Relay Chain acts as the main hub of the system, orchestrating
the network’s Nominated Proof-of-Stake (NPoS) consensus [2] which requires
the cooperation of DOT holders, validators (block authors), and nominators.
Furthermore, Polkadot serves as an interoperability platform; i.e., it allows cross-
communication between heterogeneous blockchains including external ones, such
as Bitcoin and Ethereum.

! Data sourced from https://coinmarketcap.com/
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Due to the novelty of multi-chains, there is a definite need to investigate
their network operations, especially within an active ecosystem such as Polka-
dot. Despite achieving a good standing in the market, Polkadot has not yet
received the same level of attention from academia commanded by other pro-
posals, such as Bitcoin and Ethereum. In fact, to the best of our knowledge,
this paper presents the first study on Polkadot that leverages graph analysis to
characterize its transactions network. In detail, we investigate the Polkadot net-
work using graph analysis to identify major network characteristics, including,
but not limited to, statistical and topological properties. We examine how DOT,
Polkadot’s native currency, are transferred between user accounts. We collect all
transactions that were committed on Polkadot’s Relay Chain from Genesis to
#11,320,000. Although it is to be noted that the transfer function was enabled
on Polkadot on August 18, 2020 (block height #1,205,128). From the data, we
construct the transactions graph and measure common graph metrics, such as:
degree distribution, strongly/weakly connected components (SCC/WCC), and
degree centrality. We believe that our analysis, enriched with data driven con-
siderations, can help forecast the prospect growth and uses of both Polkadot and
similar multi-chain blockchains, as well as opening up a few novel investigation
avenues.

Contributions. Our main contributions are as follows:

1. We model the transactions among regular users in the Polkadot network.
To this end, we first provide a formal definition of a Polkadot transaction,
further divided into proper and improper transactions. Then, we model the
transactions corresponding to money flow as a weighted directed multigraph.

2. We parse the Polkadot ledger, from the genesis block (May 2020) to block
11,320,000 (July 2022), to build the transaction graph representing the money
flow among users.

3. We analyze the transaction graph by measuring global and local metrics. We
obtain many new observations and insights on the structure of the network,
useful to better understand the Polkadot ecosystem.

4. We identify and quantitatively analyze two different types of abnormal trans-
actions, that we call self-loop and zero-transfer transactions, highlighting
their patterns in terms of daily frequency and transaction values.

5. We empirically verify that Polkadot is affected by the rich get richer problem
by studying user balances over time.

6. To the best of our knowledge, this is the first study that, leveraging graph
theory and network science, analyzes transaction data and measures statis-
tical properties of the Polkadot network.

7. The code used to collect the data analysed in this study is released as open
source?.

Paper Organization. The remainder of the paper is organized as follows. Sec-
tion 2 explores related work in the literature. We model the transactions among

2 A link pointing to the source code for building and analyzing the graph will be
provided in the camera-ready version
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Polkadot users in Section 3, then we describe the process of building the trans-
action graph in Section 4. In sections 5, 6, 7, and 8, we present and discuss the
results of our analysis. Lastly, we report some concluding remarks in Section 9.

2 Related Work

Several works utilized graph-based analysis to investigate prominent blockchain-
based networks, mainly Bitcoin and Ethereum [15,21]. Graph-based modeling
allows to reveal insights into cryptocurrency transactions and user interactions,
including other important tasks such as: cryptocurrency price prediction [13],
address clustering [9,22,16], user deanonymization [10], attack forensics, detec-
tion of malicious activities such as phishing scams, counterfeit tokens, or money
laundering [6], and detection of anomalies (e.g., in smart contracts execution)
[5,11]. The graphs are built from the blockchains’ publicly available transactions
data. However, the architectural differences existing between transaction-based
blockchains (e.g., Bitcoin) and account-based blockchains (e.g., Ethereum and
Polkadot) require different graph analysis approaches. In this paper, we focus on
account-based methods.

In account-based networks, native currency or tokens are represented as a
balance that can be deposited to or withdrawn from the user’s account. Each
transaction can have only one input and one output. A node in the transaction
graph represents a unique address and an edge represents a transaction. Since
there are no works thus far pertaining to Polkadot, we summarize works from the
literature about Ethereum. [8] found that Ethereum transactions volume, com-
ponents size, incoming or outgoing transaction relations can be approximated
by a power-law distribution, which exhibits a heavy-tailed structure. Addition-
ally, [15] found that the growth rate (size of nodes and edges) and graph density
are correlated with the price of ETH. Also, the degree distribution of the net-
work follows a power law, and the transaction network is non-assortative. Non-
assortativity means that nodes do not tend to communicate with only low-degree
or only high-degree nodes [17].

There are a few works in the scientific literature that investigate Polkadot.
The work in [1] presented a data-driven study that details the architecture of
Polkadot and identifies several of its limitations and design contradictions. Their
investigation shows that due to the restriction on the number of allowed val-
idators in the network, a high minimum stake requirement was enforced which
varied with the size of the validators set. In addition, a majority of the validators
were found to charge 100% commission, thus excluding nominators from mon-
etary incentivization and violating the basic principles of the NPoS economic
security. Our work investigates Polkadot from a different perspective through
graph-based modeling. Graph analysis allows us to extract refined insights into
not only the structure of the network but also the transaction patterns, allowing
us to highlight a few abnormal features in the transactions graph.



Understanding Polkadot Through Graph Analysis 5

3 Modeling The Polkadot Transaction Graph

In this section, we model the economic interactions among users in the Polka-
dot environment. To this end, we first formally define a transaction, either in its
proper or abnormal form. This distinction allows us to formally separate transac-
tions that have effectively moved money between two accounts from those that,
even if successful, have not had any real effect on the involved balances.

3.1 Polkadot Transactions

Polkadot uses the term “extrinsics” to refer to state changes emerging from the
outside world, which include balance transfers. However, for the sake of simplic-
ity, we refer to balances.transfer extrinsics as “transactions” in the rest of the
paper. We define a transaction in Polkadot as follows:

Definition 1 (Transaction). A transaction is a signed extrinsic submitted to
the blockchain by a user account via a balances.transfer call or part of a
utility.batch call, where its general attributes are:

— signed = True;
— module_id = “Balances”;
— and, call_id in(“transfer”, “transfer keep alive”, “transfer all”);

Furthermore, transactions can be formally divided as proper and improper, ac-
cording the the definitions provided in the following. Let A be the set of all
addresses present in the Polkadot ledger, and EztrinsicSuccess is the system
event triggered if the transaction is successful. We model a transaction ¢ as a
tuple (In,Out,\,T,¢), where In,Out € A and \,¢ € RT, meaning that the
account In is paying, at the time 7, A DOTs to the account Out. In addition, ¢
represents the fee payed for issuing the transaction.

Definition 2 (Proper Transaction). We say that t is a proper transaction if
it satisfies the following properties:

— FExtrinsicSuccess = 1;
— Value > 0; and,
— In # Out.

Definition 3 (Pseudospam Transaction). We say that t is a pseudo-spam,
also called improper, transaction if it satisfies the following properties:

— ExtrinsicSuccess = 1; and,
— Value =0 or In = Out.

In other words, a transaction is considered proper when the given transaction
amount, greater than zero, is withdrawn from the sender’s account and deposited
to the receiver’s account successfully. Conversely, an improper transaction is a
successful transaction with no impact on the account’s balance other than the
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deduction of the transaction fee, because the sender and receiver addresses are
the same and/or the value of the transaction is 0.

Following our analysis of the entire Polkadot ledger, we have identified two
forms of pseudospam transactions: (1) zero transfers where the transaction value
is zero DOT; and, (2) self-loops where the destination address is the same as
the sender’s address. It is important to emphasize that an improper transac-
tion is not a failed transaction; in fact, in the Polkadot network, all transactions
are stored on the blockchain, even if they have failed. However, only a success-
ful transaction returns an ExtrinsicSuccess. Consequently, we do not consider
failed transactions as abnormal. Examples of failed transactions include: trans-
actions whose destination address was not found, or those attempting a balance
transfer while having insufficient funds to cover the transaction fee or the transfer
value. In addition, we disregard Balances extrinsics that called methods intended
for use by Root origin only (Note: Sudo user was removed only after the NPoS
scheme was enabled in June 2021). Even though the use of sudo-level functions
might have had a malicious intent, such transactions were scarcely found in the
dataset, and more importantly, they have failed.

3.2 Polkadot Transaction Graph

Since Polkadot is an account-based blockchain, similar to Ethereum, the money
flow among users can be formally modeled as a weighted directed multigraph
M := (A,T), where A is the set of all addresses, i.e., user accounts, and T is the
set of successful transactions, as defined in definitions 2 and 3.

Fig. 1 shows an example of the Polkadot transaction graph. A multi-graph
allows an arbitrary number of edges to exist between a pair of nodes in any
direction (e.g., Nodes A-B) and also supports self-loops (e.g., Node D). In this
example, Node C is the most central node—all other nodes are connected through
it. The graph is weighted, where weights are attributes that describe the graph’s
edges. The attributes include the transaction value in DOT and transaction
timestamp. Incorporating timestamps in the graph analysis is essential for inves-
tigating temporal properties and evolution of the network, e.g., monthly progress.

4 Building the Transaction Graph

To build the transaction graph, we followed a methodology that includes multiple
steps. First, we parsed the Polkadot ledger and we imported the transaction
data into a relational database. Then, we queried from the database all the
transactions that met the conditions listed above in Definition 1. Finally, using
the NetworkX 2 python library, we built a MultiDiGraph and we analyzed it
under different perspectives.

For the experimental part of this work, we set up a development environment
on a DELL workstation, running a Windows 10 PRO OS, that includes a python

3 https://networkx.org/
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Fig. 1: Graph Representation of a Weighted MultiDiGraph in Polkadot.

(v3.10.2) IDE, a MySQL database (v8.0.28), and a Polkadot full node. The
hardware specifications are as follows: Intel(R) Core(TM) i9-9900KS CPUG4
GHz, 64 GB RAM, and 2 TB SSD. We configured the full Polkadot node on an
Ubuntu 20.04 LTS running on the Windows Subsystem for Linux (WSL), since
Substrate—the framework on which Polkadot is built—is not natively compatible
with Windows. We run the node in archive mode to access past states of the
chain at any point in time. After fully syncing the blockchain storage on the node,
we query and parse the blocks data into the MySQL database, starting from
genesis and ending with block #11,320,000. Nonetheless, the actual analysis of
transactions data starts at block #1,205,128, because Polkadot balance transfers
were enabled only after the specified block height. Even though an archive node
takes up large disk space (the collected data corresponding to 11.32 million blocks
occupies up to 457 GB on disk), we opted for running our own node instead of
querying the data from publicly available RPCs to guarantee data integrity and
validity.

We implemented a software that comprises two main components: (1) a
blockchain data parser; and (2) a graph analyzer. Our code base in Python
follows a modular approach: The data parser queries blocks stored on Polka-
dot’s Relay Chain, along with their extrinsics and events data, and stores the
collected data on a MySQL database, whereas the graph analyzer generates a di-
rected multi-graph abstraction of the transactions network. From the generated
graph, the analyzer computes relevant metrics that define the network struc-
ture and characteristics. We also perform statistical analysis of the transactions
data through direct SQL queries. To interface with the Polkadot node, we use
two open-source Python libraries implemented by Parity: substrate-interface
(API for Substrate nodes, which provides different methods for querying data
storage and interacting with the chain) and scalecodec—mneeded for decod-
ing/encoding SCALE Codec format that is used by the Substrate runtime. More-
over, we choose NetworkX library to perform the network analysis in Python,
since it offers a vast choice of algorithms and tools to produce various metrics,
including but not limited to: clustering, connectivity, assortativity, connected
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components and graph flows. It also supports graph visualization and serializa-
tion into different formats such as GraphML, JSON, GIS Shapefile, or a Python
Pickle object. Our graph builder module relies on graph pickling functionality
to store the graph object and deserialize it for faster processing.

5 Transaction Graph Analysis

In this section, we perform an in-depth study of the transaction network based
on various graph properties which can be classified as global properties, i.e.,
related to the whole graph, and local properties, i.e., related to single nodes. In
the following section, we elaborate on what the metrics suggest in terms of the
network’s structure.

Global Properties. The graph has a total of 2,149,679 nodes (corresponding
to unique addresses) and 7,613,325 edges (corresponding to transactions), which
include pseudospam transactions to be explored in more detail in the next sec-
tion (Section 6). In the following analysis, we omitted pseudospam transactions
then computed the graph metrics accordingly. Excluding pseudospam transac-
tions reduced the count of edges and nodes by 53,121 (transactions) and 1,722
(accounts), respectively. This is an interesting finding as it suggests that 1,722
accounts have been involved with only pseudospam transactions throughout the
history of the network. Among the global properties, we studied the graph’s con-
nected components, in addition to assortativity, reciprocity, density, clustering,
and transitivity, displayed in Table 2.

Connected Components. Graph connectivity is an important measure of the
network’s resilience. A graph is said to be connected if there exists a path between
every pair of nodes. A connected component is a subgraph in which every node is
reachable from every other node. For Strongly Connected Components (SCCs),
edge direction is taken into account, whereas for Weakly Connected Components
(WCCs), direction is ignored. In Fig. 2, we plot the distributions of SCCs in
blue and WCCs in green. For both, the result demonstrates that the network
is composed of a single giant component—the largest connected subgraph—and
many, much smaller components. The components size distribution resembles
power-law distribution and is heavy tailed as shown in Fig. 2. This indicates
that the network has a few central nodes (hubs) involved in a very large number
of transactions with other nodes, forming a giant connected subgraph; while,
the majority of the other nodes transact with just a small number of nodes. The
hubs in this network carry out a significant role; that is, connecting a significant
number of users together. Table 1 lists the node composition of the giant SCC and
WCC components, each consisting of 62% and 99.97% of the nodes, respectively.
Almost all nodes in the network can be reached from another node by some path,
ignoring edge direction.

Degree Assortativity Coefficient. Assortativity measures the correlation be-
tween nodes in the graph with respect to their degree. For Polkadot’s transactions
network, the assortativity coefficient is reported as -0.255, indicating weak disas-
sortativity. A negative assortativity value indicates that the graph’s degrees are
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Table 1: Summary of Graph Connected Components: SCC and WCC
Giant SCC Giant WCC

#SCC #Nodes (% of nodes) #Edges (% of edges) #WCC #Nodes (% of nodes) #Edges (% of edges)
806747 1,332,655 (62%) 5,870,608 (77.7%) 257 2,147,265 (99.97%) 7,559,472 (99.99%)

Table 2: Polkadot Transactions Graph’s Global Properties
#Nodes #Edges Assortativity Reciprocity Density Clustering Transitivity
2,147,957 7,560,204 -0.255 0.017 1.64e-6 0.256 9.07e-6

negatively correlated. Notably, it indicates that high-degree nodes (aka ‘hubs’,
such as crypto market exchanges) tend to form connections with nodes of lower
degrees and that the network’s topology does not behave like the so-called “rich
club” phenomenon [25]. High degree nodes connect with smaller ones rather than
with similarly high degree nodes.

Reciprocity. Reciprocity measures the likelihood of nodes in a directed net-
work to be mutually linked (i.e., having bidirectional edges) [12]. Reciprocity is
computed as 0.017, which is a value approaching 0. This indicates that just a
small number of nodes transact in both directions. Even though the majority of
the nodes are somehow connected in Polkadot, they tend to transact mostly in
a uni-directional manner.

= SCC

- wCC

10° 10! 102 10° 104 105 108
Size of Connected Component (log)

Fig.2: Connected Components Size Distribution

Density, Clustering, and Transitivity. These three metrics are computed over
the undirected graph. Density is the ratio of existing edges divided by the max-
imum possible edges in a graph [12]. The small density value (1.64e-6) indicates
a less-dense graph that has more nodes than edges. Meaning, it is likely that
users tend to create new accounts while executing new transactions to increase
their anonymity [15]. Global clustering coefficient evaluates the extent to which
nodes in a graph tend to cluster together [5]. The coefficient approximates to
0.256 (%i), indicating that user accounts are likely to form clusters; i.e., if two
accounts transact with a third account, it is likely that the former will also trans-
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act with the other two. Transitivity can be used to find the community structure
in blockchain graphs [12]. The transitivity of the graph, a small value in the order
of 107°, suggests the lack of community structure possibly due to the presence
of high-degree nodes that are “loner-stars” connected mainly to low-degree nodes.

Local Properties. Next, we investigate common local properties which are
node degree distribution (including in- and out- degree) and degree centrality.

In-Degree and Out-Degree Distribution

108 — in-degree

10% y = x @
a = 2659

— out-degree

y=x*
a=2.591

Number of Nodes (log)
8
5

10° 10! 10? 10° 104 10% 10¢
Degree (log)

Fig. 3: Transactions Graph In-Degree and Out-Degree Distribution

Degree Distribution. For cryptocurrency networks, the degree distribution
provides a high-level outlook about the transaction relations and how nodes
are connected in the network. The in-degree and out-degree values of a node
correspond to incoming and outgoing transactions, respectively. Fig. 3 shows
the in- and out- degree distributions, in log-log scale, of the transaction network.
For both distributions, the power-law model (y ~ =) provides a reasonable fit.
The tail/end segment is heavier than pure power law distributions, indicating
that the number of high-degree nodes (influential nodes, e.g., market exchanges)
is relatively much smaller than low-degree nodes (e.g., regular users). The larger
the value of «, shown in Fig. 3, the less variable the node degrees are.

Degree Centrality. Centrality measures help to identify the most important
nodes in a network. Table 3 lists the top 10 accounts based on normalized de-
gree centrality, which is the fraction of addresses each node is connected to.
We also list the in-degree and out-degree coefficients whose sum adds up to the
degree value. The max degree centrality belongs to address lexaAg.. T6EGdE.
Upon further search, we found that the address has been identified by the online
community as belonging to Binance [19], a prominent cryptocurrency exchange
marketplace. This Binance node has been inactive since January 2022; how-
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ever, before it went inactive, it transferred large sums of DOT to a new address
1gnJNT7FViy3H..8GT7 (listed in row 3), which we believe is the new Binance
node—it has achieved high degree centrality in a relatively short time span.

Table 3: Top-10 Most Important Nodes Evaluated By Degree Centrality

# |Account I deft?t?ﬁ%ole Degree|In-degree|Out-degree
1 |lexaAg2VJRQ...EGdE |Binance 0.614 |0.133 0.481
2 [12xtAYsRUrm...XkLW |Nominator 0.275 |0.149 0.126
3 |1gqnJN7FViy3H...8GT7|Binance 0.227 ]0.045 0.182
4 |15kUt2i86LH...XAkX |N/A 0.163 ]0.052 0.111
5 |15SbxverYSQz...jy82 |[N/A 0.150 ]0.069 0.081
6 |16hp43x8DUZt...40Ed |[N/A 0.090 (0.044 0.046
7 [14Kazg6SFiUC...dQhv |[N/A 0.090 (=0 0.090
8 |12wVuvpApgp...Lchb |[N/A 0.065 [0.065 ~0
9 |16HNPJqej7E...L8j [N/A 0.049 ]0.018 0.031
10|157PD8GV7pJ...B2KR [N/A 0.049 ]0.019 0.030

6 Statistical Analysis of Self-loop Transactions

The collected data contains 31,961 (0.41%) self-loop and 4,677 (0.06%) zero-
transfer transactions out of 7,613,325 transactions. Both of these transaction
types account for much less than 1% of all transactions; however, it is important
to investigate them since they do not comply with typical economical interac-
tions. In this paper, we focus mostly on self-transfers since they occur more
often.

First, we investigated self-loop transactions in the literature. We found one
mention in [12], where the authors interpreted the presence of self-loops in
Ethereum according to two trivial scenarios: users verifying if it is possible to
send Ether to themselves, or due to a mistake while specifying the receiver
address. However, in the case of Polkadot, further investigation is needed to un-
derstand the cause of this trend, as the frequency of those transactions suggests
different scenarios.

Fig. 4 shows the value and volume of self-loop transactions over time. Self-
loop transactions were found to exist on a daily basis with arbitrary values
(sometimes constant and sometimes following a pattern) and occur throughout
the day. Fig. 4a reveals interesting patterns in self-loop values and peculiar user
behaviors. For example, 1 is the most frequent transaction value, constantly used
over time, together with other multiples and sub-multiples of 10. In addition,
the figure also highlights the values adopted by the two accounts with the high-
est number of self-loops. The first one, represented with red asterisks, issued
635 transactions over three months, with different values, sometimes decreasing
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according to a specific pattern. The second one, represented with blue circles,
issued 145 transactions over a year, almost all with the same value of 0.0001.

From Fig. 4b, instead, it can be observed that self-loop transactions appear
on a daily basis in the Polkadot ledger. In particular, every day we can observe
around 50 self-loops, with a few huge spikes, and almost the double during the
last observed months.

o All addresses 500
102 - + 13sJXsUBHp...nga9
° 14gE9dZTMJ...s4ov

1015

=2
1010 . 1 2

TXs value

250 H

200 '

150 “ J
I
100 . i \ I J
.l
50 WWW Lﬂ L ”\‘H L\ F A
oo ae s : 'L\V.wu\w,wm‘,‘*fM g, ‘«JWW.«'MN«’ W HW'.H‘,A Y |
Oct 2020 Jan 2021 Apr 2021 Jul 2021 Oct 2021 Jan 2022 ° 50 100 150 200 250 300 350 400 450 500 550 600 650 700
Time Day
(a) Self-loop Transaction: Values over (b) Self-loop Transactions: Volume over
Time Time

Fig. 4: Polkadot Self-loop Transactions: (a) Values over Time — all users (black
circles) and the two most active accounts (red asterisks and blue circles); (b)
Volume over Time

7 Analysis of Polkadot Accounts’ Balance

We investigated the distribution of the total balance in DOT for all Polkadot
accounts. Overall, there is a total of 1,042,149 active accounts in the network as of
July 25, 2022. As shown in Fig. 5a, the distribution of DOTs over all accounts in
Polkadot indeed resembles power-law distribution with a heavy-tailed structure.
The majority of the accounts (over 1 million accounts) hold small balances, in
the range 0-499K DOTs, and only a few own balances float in the range from
500K to over 50 million DOTs—50M DOTs have a market value of 300+ millions
USD as of the 19th of October 2022.

We also examined the percentage of DOT held per account type (See Table 4):
nominators, validators, council members, and others which may include regular
users and proxy accounts. Proxy accounts are addresses created to perform a
limited number of actions on behalf of the main account. Nominators own the
largest fraction of DOT (= 57%), whereas validators on the other hand hold
only = 0.1% of all available DOTs.

The previous observation is interesting given that, as shown in [1], over 60%
of the validators in April 2022 charged 100% commission and retained block/era
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Table 4: Balance Share per Account Type (in July 2022)

Type Count Share
Nominators 21,404  57.275%
Validators 297 0.152%
Council 13 0.006%
Others 1,020,435 42,567%

rewards to themselves. Hence, it was expected that validators should compar-
atively have higher balances, but in reality validators contribute little (around
0.2%) to total staking. We find that the typical interaction of nominators and
validators in Polkadot is as depicted in Fig 6. Nominators declare their intent to
vote for their validator(s) by staking their DOTs. The validators collect a large-
enough stake from nominators that allows them to join the active set. After every
era (24 hours), the era rewards are relatively equally distributed to all valida-
tors. 100%-commissioned validators retain rewards to themselves, whereas other
validators can trigger a payout action to nominators according to their share in
the total stake. In the case of Binance—the world’s largest crypto exchange (3],
the rewards amassed by its validators are forwarded to an intermediary address
(called rewards address) which then forwards all its balance to the exchange
address (top central node as listed in Table 3). We would like to point out that
this behavior does not violate the protocols set out by Polkadot, nor does it pose
major security risks because block production is not affected by validator stake
[24]. These observations only identify limitations towards a ‘true’ decentraliza-
tion of the network, due to the presence of highly capitalized, centralized, crypto
exchanges [1].

To investigate the “rich get richer” phenomenon in Polkadot, we measured the
users’ balance evolution over time. A user is considered rich if his/her balance
is higher than the average user balance. Formally, the hypothesis is that the k
richest users at time t are richer that the k richest users at time t' < t [7].
To verify this hypothesis, we first define the Wealth Ratio (wr) as the average
balance of the k richest users over the average balance of all the other (JA| — k)
active users in the Polkadot network. Then, we check if the k£ richest accounts
in My are richer than the k richest accounts in My by computing wr over time,
as follows:

by (a)
ZaEKt [ K¢ | 1
b (@) (1)
>

a€{AN\K¢} TANK]

wry =

where b;(a) is the balance of account a at time ¢, and A; and K; are the set of
all active accounts and the set of the k richest accounts, respectively, at time ¢.
With M; we refer to the graph induced by transactions having timestamp less
than ¢. For our investigation, we set k& = 100, while ¢ varies appropriately to
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Fig. 5: Analysis of Polkadot Accounts’ Balance. (a) Account balance distribution;
(b) Ratio between the Top-100 richest accounts average balance with respect to
all (Active) accounts’ average balances.

consider monthly snapshots of the Polkadot ledger over the observation period.
Fig. 5b shows that wr clearly increases over time. This means that the disparity
between richest nodes and all the other accounts grows over time, empirically
confirming the rich get richer hypothesis.

8 Discussion

It is a common phenomenon for real-world networks to contain hubs that are
highly connected to many nodes. The presence of hubs gives the degree and
component size distribution a long (heavy) tail, indicating that: there are a few
nodes, with a much higher degree than most other nodes, also at the center of
the network’s giant components. These characteristics, specifically the power law
approximation, are associated with what is known as a scale-free network [8].

Based on what discussed in Section 5, we can conclude that Polkadot’s topol-
ogy resembles a scale-free network, where at its center is Binance, a crypto
market exchange, that dominates the network in terms of centrality and influ-
ence. As well-known in the literature, networks with power law degree distribu-
tions may introduce potential vulnerabilities. Indeed, if the central hubs, or the
nodes with high degrees, are controlled or compromised, the entire network’s
functionality will get affected [8]. Having exchange centers and mining/staking
pools with stronger connectivity than other nodes eventually leads to concen-
tration/centralization of power, which is a phenomenon that is not desirable in
decentralized blockchains. In the specific case of Polkadot, the most central en-
tity in the network, Binance, also actively participates in the consensus protocol
with nominator/validators accounts, potentially exacerbating the vulnerabilities
above mentioned.
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Fig. 6: Typical Interaction among Binance-supported validators, Binance-owned
accounts, and regular users.

Other interesting insights on the Polkadot environment come from Section 7,
where we showed that about 57% of DOT’s total supply is owned by nomina-
tors, which accounts for only 2% of active users. In addition, we found that
the disparity between rich accounts and regular users is increasing over time,
demonstrating that Polkadot suffers from the rich get richer phenomenon.

9 Conclusion and Future Work

To the best of our knowledge, this study is the first to formally model Polkadot’s
transactions data, probing statistical and structural properties of the network,
and investigating its properties. By means of graph analysis, we have identified
that Polkadot resembles a scale-free network and discovered the presence of a
hub, attributable to Binance, dominating the network in terms of centrality
and influence. We have also identified abnormal transaction patterns, which we
term “pseudo-spam”, that include two categories: self-loops (sender address is
the same as the receiver address) and zero-transfers (transfer value equals to
zero DOT). Both categories effectively have no economic value or impact on the
owner’s account balance. However, they still frequently appear in the ledger and,
sometimes, exhibit fuzzy patterns that deserve further investigation in future
work. In addition, we investigated the users’ balance over time, finding that
the distribution of DOT over all accounts resembles a heavy-tailed power-law
distribution, and that the Polkadot network, as many other cryptocurrencies, is
affected by the rich get richer problem.

The contributions provided in this paper, other than shedding light on a
novel proposal in the cryptocurrency ecosystem (multichains), also highlight
a few existing critical structural issues and point out transactions’ suspicious
patterns, possibly stimulating further research in the field.
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