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Abstract. The proliferation of Decentralised Finance (DeFi) and De-
centralised Autonomous Organisations (DAO), which in current form
are exposed to front-running of token transactions and proposal voting,
demonstrate the need to shield user inputs and internal state from the
parties executing smart contracts. In this work we present “Eagle”, an
efficient UC-secure protocol which efficiently realises a notion of privacy
preserving smart contracts where both the amounts of tokens and the
auxiliary data given as input to a contract are kept private from all par-
ties but the one providing the input. Prior proposals realizing privacy pre-
serving smart contracts on public, permissionless blockchains generally
offer a limited contract functionality or require a trusted third party to
manage private inputs and state. We achieve our results through a com-
bination of secure multi-party computation (MPC) and zero-knowledge
proofs on Pedersen commitments. Although other approaches leverage
MPC in this setting, these incur impractical computational overheads
by requiring the computation of cryptographic primitives within MPC.
Our solution achieves security without the need of any cryptographic
primitives to be computed inside the MPC instance and only require a
constant amount of exponentiations per client input.

1 Introduction

Ethereum introduced the first implementation of Turing-complete smart con-
tracts for blockchains, widely adopted for financial and contracting applications

? Part of the work was carried out while the author was visiting Copenhagen University
and supported by Partisia. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author and do not necessarily reflect
the views of Partisia.

?? The project was supported by the Concordium Foundation, by the Independent
Research Fund Denmark (IRFD) grants number 9040-00399B (TrA2C), 9131-00075B
(PUMA) and 0165-00079B, and by Copenhagen Fintech.

? ? ? The work was carried out while at the Alexandra Institute, supported by Copenhagen
Fintech as part of as part of the “National Position of Strength programme for Finans
& Fintech” funded by the Danish Ministry of Higher Education and Science.



2 Carsten Baum et al.

since its introduction in 2015. Smart contracts offer auditability and correctness
guarantees, and as a consequence expose both their state and any submitted in-
puts to all participants of the blockchain network. This lack of privacy not only
leaks user data but also gives rise to concrete attacks. For example, current De-
centralised Finance (DeFi) and Decentralised Autonomous Organisations (DAO)
are vulnerable to front-running [27] in token transactions and proposal voting.
This motivates the need to shield user inputs and internal contract state from
the very parties who execute smart contracts in a decentralized environment.

Challenges. Hawk [44] introduced the first notion of general-purpose privacy
preserving smart contracts, which required users to privately submit both input
strings and confidential balances to a trusted contract manager. Upon evaluation
of the contract over private inputs, the contract manager settles the confidential
outputs to a confidential ledger, proving in zero knowledge that these outputs
have been obtained according to the contract’s instructions. Importantly, in order
to accommodate real-world applications such as DeFi or DAO’s, we must extend
the Hawk notion of confidential contracts as follows:

1. Distribute the role of the trusted third party in an efficient manner, avoiding
a single point of failure without significantly sacrificing performance.

2. Only require clients to be online during a short input phase; as in the standard
client-blockchain interaction model, clients only broadcast signed inputs.

3. Allow privacy preserving smart contracts to be long-running applications over
indefinite rounds, as is the case in standard, public smart contracts.

Our Contributions. In this work we present “Eagle”, a Universally Com-
posable [20] protocol for achieving efficient privacy preserving smart contracts,
which handles all the three challenges explained above: (1) is achieved by evaluat-
ing the contract’s instructions via an outsourced secure multi-party computation
(MPC) protocol [37], where clients provide private inputs and servers execute
the bulk of the protocol to compute a function on these inputs without learning
them. We use a MPC protocol, known as insured MPC, which allows a pub-
lic verifier to identify servers aborting at the output phase, so that cheating
servers can be identified and financially punished, incentivizing fairness (i.e. if a
server gets the output, all servers/clients also get it) [7]. That is, by combining
outsourced and insured MPC we get a protocol where client computation and
interaction is independent of the circuit computed in MPC and where reliability
is incentivized and security is obtained as long as only a single MPC is honest.
(2) is accomplished with a novel input protocol which pre-processes data nec-
essary for the servers to generate private outputs (e.g. token amounts) that are
posted directly to the public ledger but can only be read by specific clients. (2)
facilitates (3), realized by a reactive version of our MPC protocol, which main-
tains a secret off-chain state over multiple rounds. Here, we contribute a model
of long-running, privacy preserving contracts, which at the onset of each round
accepts new inputs from any subset of clients. At the end of each round, clients
get public outputs and servers keep a secret internal state, allowing evaluation
to take place in a continuous, multi-round fashion, even if clients are offline (2).
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Applications. Several general applications for privacy preserving smart con-
tracts have already been proposed. Auctions: can be realized securely on-chain
with privacy preserving smart contracts, as auctions implemented without pri-
vacy are vulnerable to front-running (miners can trivially observe individual bids
posted to the ledger). Identity management: Decentralized Identity (DID)
management considers the setting where user-attributes are posted to a ledger,
in a certified, yet hidden manner. DID implemented with privacy preserving
smart contracts enables proofs and computations on private identity attributes,
facilitating their integration with blockchain applications. KYC Mixing: We
can construct a privacy preserving smart contract to realize a mixer that enforces
Anti Money Laundering (AML) policies. For example, such a mixer could use
DID to integrate Know Your Customer (KYC) information to either limit user
permissions or the quantity of mixed tokens allowed per month. Side-chains:
The MPC servers alone could be considered a privacy preserving side-chain.
Multiple sets of MPC servers could work together with a single smart contract
to realize a privacy preserving sharding scheme on any layer 1 chain with Turing
complete smart contracts. AMMs and DeFi via Cross-chain contracts: Us-
ing ideas of P2DEX [9], we show that the MPC servers can interact with smart
contracts on many different ledgers. Hence, privacy preserving smart contracts
can work across multiple ledgers and different native tokens. This realizes cross-
chain, front-running resistant automated market makers (AMMs) with strong
privacy guarantees. We discuss these applications in more detail in Appendix F.

Fig. 1: Outline of our protocol for confi-
dential contracts. The wrapping and in-
teraction of functionalities are shown.

Our Techniques. We sketch our
protocol in Fig. 1. This only con-
siders execution of a single instance
of a privacy preserving smart con-
tract for simplicity. We discuss the
multi-round setting in Sec. E where
computations are executed contin-
uesly with different sets of clients.
We assume a set of clients C and
MPC servers P, both interacting with
a ledger functionality FLedger. The
ledger hosts two deployed smart con-
tract instances: XCLedger maintains a
confidential ledger and is extended
with XLock, which locks and redis-
tributes confidential balances, out-
put and jointly signed, by the MPC
servers. Concretely our protocol runs the following phases:

Init Before any execution, the servers setup the system by sampling a threshold
signature key pair and provide sufficient collateral for the insured MPC execu-
tion, and setup smart contact XLock, administered by the distributed signature
key. We note that in the multi-round setting this only needs to be executed once
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for the specific set of MPC servers, and is thus independent of the clients and
the amount of computations that will get carried out later.

Enroll When a privacy preserving smart contract is to be executed, each
client who wish to participate transfers confidential tokens to XCLedger which
they wish to use as input to the confidential smart contract CContract. The
client then gives any auxiliary input, along with the opening information to the
commitment containing their confidential balance v, to the insured MPC func-
tionality FIdent from Fig. 6, extended with a secure client input interface (See
Appendix B.1). Each client constructs an appropriate amount of “mask” com-
mitments; one for each round of confidential contract computation, for which
they wish their input to be used. A masking commitment is simply a commit-
ment to a random value.

Verify input The servers validate the input received from the clients using
outsourced MPC, and ensure that XLock has also received the appropriate con-
fidential tokens. The servers and the clients also execute a proof to ensure that
the opening information supplied by clients are indeed valid for the confidential
token commitments. They do this following a standard Σ-protocol where each
client commits to a random commitment a and servers select a random chal-
lenge γ and ask the client to open com(c) = com(a) ⊕ (γ � com(v)). Similarly
the servers use MPC to securely open [c] = [a] + γ · [v] and check consistency4.

Evaluate After the checks are completed the servers evaluate the circuit ex-
pressing the private smart contract CContract, using insured MPC. For the
clients who are supposed to get output from this round of computation, shares of
messages and randomness for a new commitment for each client are computed,
and blinded with the “masking” values the clients provided during Enroll. If
this goes well, the servers distributedly sign a message saying that they have
reached this stage and post it to XLock.

Open For clients that receive output after this round of computation the
servers open the masked output. They publish these values and sign them, as
part of the transcript of the current round execution, and post this to XLock.
Note that XLock can generate the output coins in commitment form, due to the
homomorphism of the commitments and since it obtained the mask commit-
ments from the clients in Enroll. XLock can then transfer the new confidential
tokens back to the client’s address. We show an extension to our protocol (Sec-
tion E) that ensures no token minting can occur even if all servers are corrupted.

Withdraw Based on the masks they constructed, the clients who are sup-
posed to receive outputs can compute the coin commitment openings from their
masked outputs signed and posted to XLock by servers during Open.

Abort In case a server stops responding or acts maliciously, an honest server
can request the entering of an abort phase. Any server can do this, either by

4 In our full protocol we optimize this by batching client input checks.
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submitting a proof that the malicious server sent wrong information or by re-
questing missing information from the accused servers. At this point the accused
malicious server has a constant amount of time left to prove to the smart con-
tract that they did not abort, by submitting the message that the accusing server
claims they didn’t get. If they don’t, they will have their collateral revoked and
it will be shared among the honest servers and clients, and the contract state will
roll back one round, i.e. to the contract state preceding Evaluate. Concretely
XLock will refund the clients their input funds, plus a compensation obtained
from the cheating servers’ collateral.

Related Works. A long line of work realizes notions of privacy preserv-
ing smart contracts that sacrifice privacy [44,61,38,48,41,62,60,24] or flexibil-
ity [15,16]. Zexe [15] extends the ZCash model of confidential transactions to
enable Bitcoin Script-like stateless privacy preserving smart contracts support-
ing only very simple logic. Zether [16] implements confidential transactions on
top of Ethereum, allowing for very simple privacy preserving applications (e.g.
auctions). Zkay [61] allows for computing on encrypted private inputs by means
of keeping data encryption on the blockchain, and using NIZKs to validate that
any updates done to the encrypted is carried out correctly. Follow-up work,
Zeestar [60] uses additively homomorphic encryption to allow for limited private
computation on data from multiple owners, without them having to share their
private data with each other. Secret Network [62] and Ekiden [24] implement
general purpose contracts but rely on notoriously vulnerable trusted execution
environments (e.g. Intel SGX [51]) for privacy and correctness. Arbitrum [38]
relies on a full quorum of parties (the servers in our setting) being honest to
achieve privacy for general purpose contracts. Finally, Kachina [41] subsumes
these approaches with a framework based on state oracles [48] that yields pri-
vacy preserving smart contracts, where either flexibility is limited (i.e. contract
state is only updated by one client’s private input at a time) or privacy is com-
promised (i.e. a trusted third party must learn clients’ private inputs in order
to update the state). The ideal functionality of Kachina is designed to permit
input concurrency, allowing honest inputs to be finalized on a global ledger in
a different order as their generation; the Kachina protocol requires private in-
puts to be accompanied with NIZKs proving a valid update of the private state
fragment. Here, the NIZKs are not bound to a specific, public contract state
and thus remain valid even if the public contract state observed by the user was
updated by another user input in the meantime.

Combining MPC with blockchain based cryptocurrencies and smart contracts
has been investigated in a long line of works [1,2,12,46,45,47,43,25,13,11,31,7,9,8]
aiming at achieving fairness in the dishonest majority setting via financial pun-
ishments. The core idea of these works is having all parties, who execute the
MPC protocol, provide a collateral deposit, which is taken from them in case
they are caught cheating. Thus incentivizing honest behavior. However, this ap-
proach publicly reveals the amount of collateral deposited by each party, which
falls short of achieving our notion of privacy preserving smart contracts, where
both auxiliary data and the amount of tokens given as input to the contract
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must remain private. Notice that revealing the deposit amount is an issue in ap-
plications where this amount is directly related to the client’s private input, e.g.
in sealed-bid auctions, where the collateral deposit must be equal to at least the
client’s private bid. An auction protocol using collateral deposits with private
amounts was proposed in [32] but it cannot be generalized to other tasks.

Hawk [44, App. G] does suggest to use MPC to achieve a decentralized con-
fidential smart contracts on both token amount and auxiliary input. However,
Hawk works in the ZCash model and thus their MPC solution would require the
computation of SNARKs to realize the ZCash transactions, within the MPC cir-
cuit. Although it has been shown [53,39] that integrating NIZKs with MPC can
be done without degrading performance too much, there is still a performance
hit. Since the construction of a single ZCash transaction SNARK still takes a
non-negligible amount of time plain, this would naturally be inefficient to realize
in MPC, as MPC is orders of magnitude slower than regular computation. Fur-
thermore, they need all users to take part in the MPC computation. zkHawk [4]
improves upon this, by forgoing the need of doing SNARKs in MPC, but still
require all users taking part in a confidential smart contract to facilitate an
MPC computation which must compute Schnorr style ZKPs on Pedersen com-
mitments to the bit-decomposition of the amount of coins each of them hold.
While V-zkHawk [5] forgoes the need of proofs of the bit-decomposed commit-
ments, they replace it with the computation of commitments in a larger fields
and a signature, in MPC instead. While more efficient, this approach would still
require MPC over a large domain and contributes non-negligible overhead.

In Appendix A we further discuss related works.

2 Preliminaries

Let y←$F (x) denote running the randomized algorithm F with input x and im-
plicit randomness, and obtaining output y. Similarly, y ← F (x) is used for a de-
terministic algorithm. For a set X , let x←$X denote x chosen uniformly at ran-
dom from X . s denotes the computational and κ the statistical security parame-
ter. Let [x ] denote secret x maintained in an MPC instance:

Table 1: Notation.

P The set of servers.
C The set of clients.
n Number of servers n = |P|.
m Number of clients; m = |C|.
l Number of bits representing balances.
z Number of input/output per client.
κ Computational security parameter.
s Statistical security parameter.

F An ideal functionality.
Π A protocol.
L A ledger map indexed by vk.
X A smart contract program.

g A smart contract in circuit form.
vk A public key for signature verification.
x A client input.
y A client output.
v̄ A token balance.
v̄max The maximum permitted balance.
v̄max A vector of the maximum permitted balance.

we lift the [ · ] notation to any object that
can be encoded over secrets securely in-
put to an MPC scheme, e.g. [ g ], where
g is an arithmetic circuit over field F. We
use a group G where the discrete log prob-
lem is hard, and which is a source group of
pairing scheme. For simplicity we assume
|G| = |F| = p. Unless noted otherwise we
use log to denote the logarithm to base
2, rounded up. We use v̄max to denote the
maximum amount of tokens we want to
represent and say l = log(v̄max). For sim-
plicity, we assume |C| · v̄max < |G|, where
C is the set of participating clients. We
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denote set {1, 2, . . . , n} by [n] and vectors
by bold faced Latin letters, e.g. v,w.

2.1 Security Model and Building Blocks

We analyse our results in the the (Global) Universal Composability or (G)UC
framework [21,23]. We consider static malicious adversaries. Our protocols work
in a synchronous communication setting, which is modelled by assuming par-
ties have access to a global clock ideal functionality FClock as seen in multiple
works [3,40,43]. The core component of our protocols is publicly verifiable MPC
with cheater identification in the output phase, which is modelled as an ideal
functionality FIdent, which can be realized as described by Baum et al. [7,9]. This
functionality produces a proof that either a certain output was obtained after the
MPC or that a certain party has misbehaved in the output phase, while cheat-
ing before the output phase causes an abort without cheater identification. We
further extend this functionality to handle reactive computation [30,29] and an
outsourced computation with inputs provided by clients and computation done
by servers [37,28]. Moreover, we use Pedersen Commitments [54], digital signa-
tures represented by an ideal functionality FSig as in [22], threshold signatures
represented by an ideal functionality FTSig as defined by Baum et al. [9] and non-
interactive zero knowledge proofs represented by FNIZK as defined by Groth [36].
Further discussion on our security model and building blocks is presented in
Appendix B.

2.2 Ledgers & Smart Contracts

We model a ledger functionality FLedger in Appendix C.1 featuring a smart con-
tract virtual machine which is adapted from an authenticated, public bulletin
board functionality, an approach adopted from the work of Baum et al. [7,9].
For this work, we emphasize accurate modelling of confidential balances, which
are implemented on a public ledger, and omit the full consensus details in our
UC model, similar to previous works [43,3].

Token universe. FLedger supports a token universe consisting of t token types:
T = (τ1, ..., τt). A ledger in FLedger maintains a map from signature verification
key to balances of each token type: L : {0, 1}∗ → Zt. We write v̄ = (v1, ..., vt)
for a balance over all supported token types. In addition to balances associated
to signature verification keys, FLedger also maintains token balances for each
deployed smart contract instance. The ledger functionality enforces the preser-
vation of token supplies over T.

Overview of smart contracts. In this work, we present smart contracts as
human-readable programs and assume the presence of a compiler which trans-
lates program X to a valid circuit T and initial state γinit. The following smart
contract programs are deployed in the protocol which realizes the proposed con-
fidential contract functionality FCContract.
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- XCLedger (Figure 11) describes a smart contract which implements a confiden-
tial token wrapper for each token in T supported on the base ledger FLedger.

- XLock (Figure 14) is an extension to XCLedger. It permits the locking and redis-
tribution of confidential balances authorized by verifying threshold signatures
generated by the servers (via global functionality FTSig).

- XCollateral (Figure 15) accepts collateral deposits from servers, which upon being
identified as cheating parties lose their collateral to clients.

2.3 Confidential ledgers from FLedger

We briefly describe a confidential ledger functionality FCLedger, presented in full
detail in Appendix C.2, that can be implemented from a hybrid FLedger function-
ality, enabling both confidential balances and the confidential transfer of default
tokens types T exposed by the underlying public ledger FLedger. This modeling
choice maximizes the generality of our construction, as it can be implemented
on any standard ledger and a basic smart contract machine.

Confidential ledger. Confidential coins in FCLedger are identifiable by a unique
public id, and a confidential balance v̄ over T, as in [55]. Each confidential token
is publicly associated with an account verification key vk, owned by a party
that generated it with GenAcct. A confidential transfer consumes two input
coins (id1, id2) with confidential balances (v̄1, v̄2) and mints fresh output coins
(id′1, id

′
2) with confidential balances (v̄′1, v̄

′
2), such that (v̄1 + v̄2 = v̄′1 + v̄′2). Here,

coin id′1 is now held by the owner of the receiving account, who also learns the
confidential amount v̄′1.

Functionality FCLedger exposes Mint and Redeem interfaces: a mint activa-
tion locks a public amount of tokens T and generates a fresh confidential token
of the same balance. Conversely, a redeem activation will release the balance of
a confidential coin back to the public ledger.

Realizing a confidential ledger. A confidential token is realized in proto-
col ΠCLedger described in full detail in Appendix D.1 with Pedersen Commit-
ments [54]. Let g, g1, ..., gt, h denote generators of group G of safe prime order
p, such that si in gi = gsi and w in h = gw are given by FSetup (parameterized
with g ∈ G) that publicly outputs g1, ..., gt, h. The commitment to a balance
v̄ = (v1, ..., vt) over tokens T with blinding r is com(v̄, r) = gv̄hr = gv11 ...gvtt h

r.
Pedersen commitments are additively homomorphic: com(v̄1, r1)◦com(v̄2, r2) =
com(v̄1 + v̄2, r1 + r2). Thus, during a confidential transfer, the sum equality be-
tween consumed input and freshly constructed output coin commitments holds
if total token balances are preserved and r′1 and r′2 are correlated such that
r1 + r2 = r′1 + r′2.

com(v̄1, r1) ◦ com(v̄1, r1) = com(v̄′1, r
′
1) ◦ com(v̄′2, r

′
2) (1)

However, since the equality above holds for any v̄1 + v̄2 ≡ v̄′1 + v̄′2 mod p
and correlated r′1, r

′
2, an additional p units of each token in T can be minted:
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v̄1 + v̄2 + p ≡ v̄′1 + v̄′2 mod p. Thus, each confidential token is associated with
NIZK π which proves R(c; v̄, r) = {c = com(v̄, r) ∧ v̄ ≤ v̄max = 2l − 1}, such
that such wrap-around never occurs undetected.

We note that ΠCLedger in itself affords a fully decentralized layer 2 confiden-
tial token transfer solution, since it is independent of the MPC servers. Thus
allowing client’s to send a receive confidential tokens in a peer-to-peer manner.
This is needed to prevent leakage of exchange orders after-the-fact by analysing
client’s non-confidential tokens given as input and withdrawn as output from a
privacy preserving smart contract execution. By allowing the privacy preserving
smart contract executions to integrate in a greater payment ecosystem reason-
ably ensures that it is possible to hide token inputs and outputs from a privacy
preserving smart contract execution by using them for confidential payment,
similar to other confidential token systems.

We present a protocol ΠCLedger which GUC-realizes FCLedger in Appendix D.1,
where we also prove the following statement:

Theorem 1. Protocol ΠCLedger GUC-realizes functionality FCLedger in the FClock,
FLedger, FNIZK, FSetup, FSig-hybrid model against any PPT-adversary corrupting
any minority of committee Q.

3 Confidential contracts

We present our formal model of confidential contracts. We assume m clients
{C1, . . . , Cm} and servers {P1, . . . , Pn} that interact with FCContract, which ex-
tends FCLedger. For simplicity of presentation, we first present a single-round
confidential contract functionality in Figure 2, and subsequently illustrate how
it is easily extended to a multi-round contract functionality where clients can
selectively choose to participate in specific rounds.

The choice of modelling FCContract as an extension of FCLedger arises from
the relation between underlying protocols: confidential coins in ΠCLedger that are
committed to a confidential contract evaluation must be locked and subsequently
replaced by a new set of output coins reflecting a new distribution of balances,
determined by ΠCContract. However, this requires verification operations over the
homomorphic commitment representation of coins in ΠCLedger, which are not
exposed by FCLedger.

We provide a brief sketch of the interface exposed by FCLedger. Upon initial-
ization with an arithmetic circuit g encoding only the contract logic, users can
enroll, specifying input string x and a confidential coin to input, identified by its
id. Upon a completed Enroll, the functionality is prompted by servers to evaluate
circuit g on both client input strings, interpreted as numerical values, and input
balances, with checks to ensure g does not mint tokens. FCLedger permits clients
to withdraw anytime to retrieve the private output string and output balance.
FCContract permits the simulator to abort and indicate cheating servers, which
are then penalized by the functionality.

Model of confidential contracts. Unlike public smart contracts deployed to
FLedger, an instance of FIdent permits the computation of any arithmetic circuit
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Functionality FCContract, extends FCLedger

FCContract interacts with clients C = {C1, ..., Cm} and servers P = {P1, ..., Pn}.
The functionality exposes interfaces and and accesses the state of FCLedger. It is pa-
rameterized with max. circuit depth dT , and collateral balance v̄coll.

Init: On (Init, sid, g) from Pi ∈ P forward messages to S. If S continues.
1. Run GenAcct and Init procedures on FCLedger.
2. Assert that g is a circuit and that depth(g) ≤ dT , store g.
3. Assert vk ∈ K[Pi] and L[vk] ≥ v̄coll.
4. Set L[vk]← L[vk]− v̄coll.

- If all servers have successfully called Init, set state to enroll, tick FClock.

Enroll: Upon input (Enroll, sid, x, id, vk) from client Cj ∈ C,
1. Assert vk ∈ K[Cj ] and 〈id, v̄〉 ∈ L[vk].
2. Forward (Enroll, sid, id, vk) to S, if S aborts, run Abort. Otherwise, continue.
3. Assert state is in enroll and ∃〈id, v̄〉 ∈ LConf[vk]: then remove 〈id, v̄〉.
4. Store input (xj , v̄j).

- If all clients have successfully called Enroll, tick FClock.

Execute: Upon input (Execute, sid) from Pi ∈ P,
1. If Execute received from all P and FClock ticked since state update to enroll,

forward (Execute, sid) to S and wait for Ok or Abort. If Ok, continue.
a. Evaluate circuit g over current user inputs {(xj , v̄j)}j∈[m] and client state.
c. Store client states {(yj , w̄j)}j∈[m] read from output gates of g.

- Assert
∑
j∈[m] v̄j =

∑
j∈[m] w̄j . Tick FClock.

2. Forward (Evaluate, sid) to S and wait for Ok or Abort.
- If Ok returned, set state to evaluated and tick FClock.

3. Send (Output, sid, {yj , w̄j}j∈[m]) to S and wait for Ok or Abort.
- If S aborts, it provides cheating server set J , run Abort with J .

4. For j ∈ [m], get a unique id′j from S, and set LConf[vkj ]← LConf[vkj ]∪ {〈id′j , w̄j〉}.
5. Set state to enroll and tick FClock.

Withdraw: Upon (Withdraw, sid) from Cj ∈ C, obtain newly stored outputs since
last Withdraw by Cj ∈ C . Return ((yj,1, 〈id′j,1, w̄j,1〉), ..., (yj,l, 〈id′j,l, w̄j,l〉)).

Abort: Tick FClock,
a. If state is enroll, return server and client funds: update L, LConf.
b. Else if state in evaluated, obtain cheating servers J from S:

- If J 6= ∅, reimburse clients C and honest servers P\J , then
distribute J ’s collateral amongst C: update L, LConf accordingly.

- Else if J = ∅, obtain {(yj , v̄j)}j∈[m] from last evaluation of circuit g.
- For Cj ∈ C′, sample idj ←$F and set LConf[vkj ]← LConf[vkj ] ∪ {〈idj , v̄j〉}.
- Return collateral for all P: update L accordingly.

c. Terminate.

Fig. 2: Functionality for Confidential Contracts

on both private and public inputs. We model a confidential contract as an arith-
metic circuit over a field Fp consistent with the domain that FIdent is realized
with. A well-formed confidential contract permits the writing of both numerical
and financial inputs from each client to its input gates. Further, we enforce a
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maximum circuit depth dT prior to the circuit evaluation to bound the rounds
of interaction in the MPC instance.(

([ y1 ], [ w̄1 ]), ..., ([ ym ], [ w̄m ])
)
← evalg

(
([x1 ], [ v̄1 ])...., ([xm ], [ v̄m ]))

Upon confidential evaluation of a contract circuit g with well-formed depth and
gates, the following assertion must be performed at each run-time over confiden-
tial inputs and outputs of evaluated g: namely, that token supplies have been
preserved. ∑

i∈[m]

[ v̄i ] =?
∑
i∈[m]

[ w̄i ] (2)

One-round client-server interaction. Upon providing inputs to a confiden-
tial contract execution, clients can go off-line and retrieve confidential outputs
with Withdraw at any later point in time.

Collateral. Our need for collateral follows the same logic as in Insured MPC [7].
The collateral contract incentivizes the servers to continue to participate in the
privacy preserving smart contract computation, and behave honestly as they
would otherwise suffer a financial loss. While the underlying maliciously secure
MPC system will ensure that a server acting maliciously will cause an abort ex-
cept with negligible probability, such an abort the adversary might have learned
the output of the computation. This can in some situations have high value.
Thus we require each server to give as collateral, strictly more than the max-
imum value they could gain from learning the output of a privacy preserving
computation.

3.1 Realizing the confidential contract functionality

Overview of Protocol. Having provided a high-level overview of the protocol
phase in Section 1, we now proceed to detail the individual protocol phases for
the single-round privacy preserving smart contract execution and refer to Ap-
pendix D.2 for the full protocol description and UC-security proof, and to Sec. E
for an outline of the multi-round protocol.

Setup of contracts. Servers deploy instances of XLock[XCLedger], XCollateral on
FLedger. Since wrapper XLock extends XCLedger, both are deployed and initialized as
a single contract instance on FLedger with shared contract id (cnLock) and shared
state such as the confidential ledger (LConf). Here, the function of XLock is to lock
the confidential coins of clients input to the confidential contract evaluation, and
to replace these with a new confidential distribution according to result of the
contract evaluation. Further, XLock is initialized with a threshold signature ver-
ification key vkTSig, jointly generated by all servers via FTSig: whenever servers
agree on a new status of the contract evaluation in FIdent, this agreement can
be settled in XLock with a threshold signature jointly generated via global func-
tionality FTSig. XCollateral is parameterized by cnLock and is activated each time
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FClock progresses: it obtains collateral from all participating servers. It observes
any recorded cheating servers J stored in the state of contract instance cnLock

and enforces penalties accordingly.

Client enrollment. Clients interact with XLock to enroll a confidential coin it
controls to the contract evaluation, and send both the coin commitment opening
and numerical input x to an instance of FIdent. Enrolled coins are removed from
the confidential ledger LConf maintained by X CLedger and moved to a dedicated
ledger LLock for funds committed to a pending MPC computation in FIdent.

Clients must also commit to a output mask during enrollment, which enables
the subsequent redistribution of confidential coins without client interaction in
the output phase of the contract evaluation. Here each client with confidential
coin input c and numerical input x performs the following:
- Samples ŷ←$F as a numerical output mask and sends to FIdent.
- Samples ŵ←$F|T|, ŝ←$F, and computes mask commitment ĉ← com(ŵ, ŝ).
- Sends mask commitment ĉ to XLock on FLedger.
- Sends mask commitment openings (ŵ, ŝ) of ĉ to FIdent.
Here clients can also give any auxiliary input, x, needed for the privacy preserving
smart contract computation.

Client

XLock FIdent

Server

c (v̄′, r̄′)

c
?
= com(v̄′,r̄′)

(v̄′(i),r̄′(i))
c

Input verification. Upon enrollment of clients,
servers must verify that the confidential coin c
and mask commitment ĉ sent to XLock are con-
sistent with their respective openings (v̄, r̄) and
(v̂, r̂) sent to FIdent during enrollment. For sim-
plicity of presentation, we illustrate the batched
input verification of input confidential coins and
their openings assuming a token universe size of
|T| = 1, such that c = gv̄hr̄. Input verification for output masks ĉ and their
openings submitted to FIdent follow similarly.

Each server obtains both confidential coin c from XLock and additive shares
of submitted openings thereof from FIdent, namely (v̄′ (i), r̄′ (i)). We write v̄′ (i) =
(v̄+ε)(i) and similarly for r̄′ (i), where the ε denotes the error or discrepancy that
the adversary can introduce to v̄. We employ a standard technique of evaluating
a random linear combination over client inputs to verify consistency.

1. Servers jointly sample γ, α, β←$F and open γ.

2. Each server locally computes the following on the inputs from m clients.

- v̄
′(i)
lin = α(i) + γ v̄

′(i)
1 + ... + γm v̄

′(i)
m and r

′(i)
lin = β(i) + γ r

′(i)
1 + ... + γm r

′(i)
m

- Subsequently, it sends v̄
′(i)
lin and v̄

′(i)
lin to all other servers.

3. Each server locally reconstructs v̄′lin =
∏
i∈[n] v̄

′(i)
lin and r′lin =

∏
i∈[n] r

′(i)
lin

4. Servers locally verify:
∏
i∈[n] g

α(i)

hβ
(i) ∏

j∈[m] c
γj

j
?
= gv̄

′
linhr

′
lin

Note that v̄
′ (i)
lin and r

′ (i)
lin are shares held by servers and do not reveal the values

of user inputs. We write v̄′lin = α+γ (v̄1 +εv̄1)+ ... +γm (v̄m+εv̄m) and similarly
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for r′lin to expose ε’s introduced by the adversary. If ε values are committed to
by the adversary before α, β, γ are sampled, we can interpret v̄′lin − v̄lin = 0 and
r′lin−rlin = 0 as m - degree polynomials with coefficients chosen by the adversary
that are later evaluated at some random coordinate γ: since verification step
(4) implies exactly these assertions, the probability for an undetected non-zero
error is therefore m/|G|, where m is the number of polynomial roots, by the
Schwartz-Zippel Lemma.

Execute. Servers call the Evaluate interface on FIdent to evaluate circuit g
with input gates set to client inputs.

([x1 ], [ ŷ1 ], [ v̄1 ], [ r1 ], [ ŵ1 ], [ ŝ1 ]), ..., ([xm ], [ ŷm ], [ v̄m ], [ rm ], [ ŵm ], [ ŝm ])

Upon secure evaluation, outputs in form of numerical values and balances are
written to the output gates of g:

(
([ y1 ], [ w̄1 ]), ..., ([ ym ], [ w̄m ])

)
. Before masking

these for opening, the servers then perform a confidential consistency check to
ensure the preservation of tokens as shown in Equation (2).

Masked output values are obtained by applying the masking values input
by users, [ y′j ] = [ yj ] + [ ŷj ] and similarly for balances, [ w̄′j ] = [ w̄j ] + [ ŵj ]
and generating a joint signature σvkTSig

(evaled) via FTSig, that is sent to XLock

on FLedger. Upon verification, the XLock contract updates the state of protocol
execution, reflecting completion of the Execute phase.

Open. Servers run Optimistic Reveal in FIdent to open masked numerical
outputs and balances

(
(y′1, w̄

′
1), ..., (y′m, w̄

′
m)
)
. Should all servers agree on the

successful completion of the contract evaluation, they jointly sign all masked
outputs and send these to XLock (on FLedger), which then computes the unmasked
confidential coins for clients with the newly computed distribution as follows.
Given the masked output balance w̄′ from FIdent and the coin mask ĉ sampled
by a client in Enroll, contract XLock computes

(a) The masked confidential coin: cout ′ ← gw̄′
h0

(b) The unmasked confidential coin: cout ← cout ′ · ĉ−1

We rewrite (b) as cout = gw̄′−ŵh−ŝ = com(w̄,−ŝ) to expose the unmasking of
the output coin without any knowledge of the final balance. XLock subsequently
stores unmasked output coin cout in the confidential ledger in XCLedger, thereby
settling the output balance distribution read from output gates of contract circuit
g. Should XLock successfully verify the signed outputs, XCollateral will infer from
the state of XLock the completion of a successful round and return the deposited
collateral to the servers.

Withdraw. Upon a successful Open, the output of the confidential contract
evaluation has completed. Each client can obtain their masked output (y′, w̄′)
from XLock and newly minted cout from XCLedger anytime following a successful ex-
ecution of a contract evaluation. Let ŷ and (ŵ, ŝ) be the output masks generated
by the client in Enroll. The withdrawing client obtains

(a) The numerical output: y ← y′ − ŷ
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(b) The opening of the output coin: (w̄, s)← (w̄′ − ŵ,−ŝ)

Thus, their the tokens are still confidential and that clients can transfer or redeem
these using ΠCLedger in Fig. 10.

Abort. If the protocol aborts prior to the completion of the Execute phase,
client funds are simply returned by XLock and collateral deposited to XCollateral

is returned. If servers have agreed upon the completion of Execute, honest
servers can interact with FIdent to either (a) obtain shares that are verifiable and
enable reconstruction of the output or (b) identify cheating servers (Figure 7).
Thus, XLock as a registered public verifier, can identify cheating servers by either
verifying shares with FIdent, or obtaining the identities of servers J that refuse
to participate in revealing their shares and allowing their verification. Cheating
servers lose their collateral held by XCollateral which is redistributed to clients.

We present the full protocol ΠCContract which GUC-realizes FCContract in Ap-
pendix D.2 and prove the following statement.

Theorem 2. ΠCContract[ΠCLedger] realizes FCContract[FCLedger] in the FClock, FIdent,
FLedger, FNIZK, FSetup, FSig, FTSig-hybrid model against any PPT-adversary cor-
rupting at most n− 1 of the n servers P statically and any minority of Q.

4 Efficiency

We note that since previous works focus on using zero knowledge proofs and
a trusted contract manager, we refrain from directly comparing our efficiency
to their works. The closest previous works to ours is the Hawk family [44,4,5].
Unfortunately neither of the works provide an efficiency analysis, making it
hard to provide a meaningful comparison. However, we note they all require
computation of cryptographic primitives (commitments and ZKPs) in MPC.
Thus requiring strictly more MPC computation, along with a larger (and hence)
slower field of computation, as this field is needed to facilitate computational
security of the cryptographic primitives they compute in MPC. In the following
analysis, we assume Bulletproofs for range proofs and standard Fiat-Shamir
Schnorr proofs of knowledge of exponents using elliptic curves. Although neither
of these are UC-secure since knowledge extraction requires rewinding, there is
evidence [34] that these techniques can be made non-malleable in the algebraic
group model. Hence, for the purpose of efficiency we believe it is reasonable to
forgo the formal UC security in this section. We use BLS threshold signatures
and for simplicity we assume the size of the group used for BLS and commitments
is the same, although it will in practice be slightly larger for BLS.

We outline the amount of heavy computations needed for our core protocol
in Table 2, except what is needed by the underlying MPC computation com-
puting the contract circuit g, reflecting the privacy preserving smart contract
CContract. Concretely we count the amount of group exponentiations when as-
suming that the Pedersen commitments are realized using elliptic curves, along
with pairings assuming BLS [14] has been used for realizing distributed sig-
natures. The table only contains the complexity of executing one instance of
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Init Execution Abort

User exp 2 2 0

Server exp 2 + 2(n− 1) 6|C|+ 2 0

pair 0 n− 1 0

mult 0 z|C| 0

SC comp. exp 0 2|C|z |C|
pair 0 2 0

SC call space #G elem. 3 |C|z O(n|C|z)
Comm. #G elem. O(n) O(n2 · z · |C|) O(n2 · z · |C|)

Table 2: Complexity of our protocol when executing one CContract, excluding the
computation of contract circuit g in MPC. We assume |C|z > s for statistical security
parameter s, where z is the amount of input/output for each client in the set of clients
C, including the hidden token amount. n = |P| is the amount of servers and mult
denotes the number of multiplications in MPC.

CContract, but we note that execution of multiple contracts is slightly sublin-
ear in the complexity of a single execution. The Abort column illustrates the
additional overhead associated with a cheating party.

Mint ConfTransfer Redeem

User 4 O(log(v̄max) · log(log(v̄max))) 3

SC comp. 3 O(log(v̄max)) 3

SC space 3 2 log(v̄max) + 10 4

Table 3: Complexity of CLedger in group exponentiation and amount of group elements
stored, when v̄max is the maximum amount of allowed tokens (Recall |C| · v̄max < |G|).

When it comes to our confidential token layer, we outline the complexity in
Table 3. We note that the constant in the complexity of Confidential Transfer
reflects two range proofs over log(|G|/2), under the assumption that BulletProofs
are used [17]. Although if the domain of the token amounts is further limited
from G to v̄max < |G|/|C| then they can be reduced to range proofs of [0; v̄max−1]
and thus complexity O(v̄max · log(v̄max)).

In both tables the amount of smart contract space is only what needs to be
submitted. The persistent space use needed is only 3+3|C| group elements, if we
assume that the storage used when posting to XLock in evaluate and open gets
overwritten the next time the servers call these methods.

The round complexity for all steps of both the confidential token layer pro-
tocols and our core protocol is constant, assuming g has constant multiplicative
depth. Otherwise, the computation of g dominates the round complexity.
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this scheme permits the receiver to obtain the opening of privately received coins
by brute-forcing an discrete-logarithm. Thus, unlike in other schemes, a sender
does not need forward the private coin opening to the receiver. A weaker notion
of privacy is achieved by Monero [57,52], which offers k-anonymity for senders.

Privacy preserving smart contracts. Hawk [44] introduces a general notion
of smart contract evaluation over private individual inputs resulting in private
individual outputs. The contract is evaluated over private numerical and private
financial values, and is settled on a confidential ledger. Correctness and privacy
is archived through the use of non-interactive zero-knowledge proofs. Thus, each
party learns nothing about the inputs or outputs of other parties, other than
what is implied by its own numerical and financial output. Although the notion
of privacy here is limited to ledger and inter-party privacy, as a trusted third
party is still required to carry out the private computation. This is quite dif-
ferent from what we normally consider private in the cryptographic community.
Hence continuous research has been carried out, trying to remove this trusted
third party, although it seems to require expensive, general non-interactive-zero-
knowledge (NIZK) proofs to be computed inside the MPC function evaluation to
permit private settlement on a confidential ledger. A recent line of work has by
Banerjee et al. [4,5] contributes concrete efficiency improvements in realizing the
private smart contract notion of Hawk by distributing the trusted party using
MPC and by reducing the complexity of NIZK’s which are computed inside the
MPC. Recently, Kanjalkar et al. [39] present an optimized ZK protocol to be
proven inside MPC.

Zexe [15] extends the ZCash model of private transactions with a private,
state-less contract model. Bitcoin Script-like contracts are hidden, as are con-
tract inputs, enabling limited contracting functionality with privacy. Further-
more, Zexe requires the execution of a trusted setup phase for each application.
However, this need was removed in the follow-up VeriZexe [63].

A notion of smart contracts with data privacy is proposed in zkay [61]. Here,
private data is encrypted on the blockchain, and NIZKs are used to prove that
any modifications are done correctly. Follow-up work, Zeestar [60] uses additively
homomorphic encryption to allow for limited private computation on data from
multiple owners, without them having to share their private data with each
other. SmartFHE [59] on the other hand uses FHE and NIZKPs construct a
blockchain with support for privacy preserving transactions and general privacy
preserving smart contracts. Their idea is to have each user setup an FHE scheme
associated with their account. Every time they use the tokens in their account,
they use the FHE scheme to perform the needed computation on their tokens and
any auxiliary input and prove in zero-knowledge this was done correctly, before
posting everything to the blockchain, for verification by a miner. Unfortunately
this is rather inefficient, as simply validating a private transactions takes a miner
more than 9 seconds. Furthermore, to compute fully private smart contracts with
inputs from multiple parties they are required to expand their encrypted input
to be encrypted under all public keys of the clients giving input to the smart
contract. Thus requiring online interaction between all the clients with relevant
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data to the computation. Furthermore, in general this line of work does not
explicitly provide privacy between contract participants, as a party which holds
the encryption key can trivially observe the contract evaluation in the clear.

Fair MPC with public ledgers. We describe two closely related lines of
work that integrate MPC protocols with a ledger functionality to achieve (1)
fair MPC protocols, which identify and penalize cheating parties and (2) private
smart contracts executed inside a MPC instance which finalize the confidential
outcome on the ledger.

The first works to utilize the Bitcoin ledger to achieve fairness in lottery
games was introduced in [1,2], where cheating parties can abort upon learning
the output first but incur a financial penalty without requiring a trusted party
to arbitrate. This notion of output fairness was generalized to any secure func-
tion evaluation by Bentov et al. [12] and to the reactive setting [46]. Subsequent
works improve the efficiency of output fairness [45,47,13,11,31], culminating in
Insured MPC [7], which formulates a UC-secure MPC functionality with identi-
fiable aborts. Another line of work [43,25] focuses on stronger notions of fairness,
identifying aborting parties’ prior to the output phase.

P2DEX. At ANCS 2021 Baum et al. [9] introduced P2DEX, which extends In-
sured MPC [7] by allowing for cross-chain communication and privacy preserving
smart contract computation. Although their privacy preservation only involves
auxiliary input, and not the token amounts. Their idea is to first have user send
the tokens to a burner address, generated in a distributed manner by a set of
servers. These servers then run an Insured MPC protocol which computes a pri-
vate smart contract based on auxiliary input privately given by the users. Based
on the result, appropriate amount of tokens can be transferred from the burner
addresses to the users by having the servers threshold sign these transactions.
The authors use this to make a system for decentralized cross-chain exchange,
preventing both miner and operator front-running.

B Extended preliminaries

A model of smart contracts. FLedger parses authenticated messages which
can authorize the deployment and activation of smart contracts, each modelled
with a state transition function encoded as an arithmetic circuit T of maximum
depth dT , thereby enforcing a notion of bounded termination. Each contract
maintains a public state fragment γ ∈ {0, 1}∗ that is updated by circuit T upon
the evaluation of each authenticated CallContract message. Each contract
also maintains a balance w̄ of T. We sketch the evaluation of a smart contract
call with parameters cn, fn, x, v̄ authorized by signature verification key vk:

- Contract identifier cn selects the contract instance for evaluation.

- Function selector fn is an input that identifies the contract interface being
evaluated, facilitating the logical separation of contract descriptions.
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- Input string x ∈ {0, 1}∗ denotes parameters input to circuit T : it is logically
evaluated by the contract interface selected by fn.

- Token balance v̄ is provided to the contract call and is subtracted from the
ledger entry associated with verification key vk.

The circuit T associated with contract instance cn is then evaluated on input
(ν | γ | w̄ | cn, fn, x, v̄, vk), where ν denotes FClock round at the time of the call,
and γ denotes the contract state stored by FLedger. Upon completed evaluation
of T , FLedger reads the encoding of a state transition L|γ|w̄ →ts L′|γ′|w̄′ from
the output gates of evaluated T , thereby updating ledger, contract state and
contract balance. Here, FLedger asserts token supplies over T are preserved and
that non-calling account balances cannot decrease from applying update ts.

We note the presence of call-back gates permitted in contract circuits de-
ployed to FLedger, related to a UC-modelling technicality described in more detail
in Appendix C.1. Concretely, these gates permit the UC functionality FLedger to
forward verification calls to hybrid functionalities FIdent and FRNIZK via an honest
majority committee Q. Thus, in the hybrid FIdent, FRNIZK-setting, the simulator
maintains the ability to equivocate and efficiently extract inputs from dishonest
parties.

Pedersen commitments. Let g, h denote random generators of G such
that nobody knows the discrete logarithm of h base g, i.e., a value w such
that gw = h. The Pedersen commitment scheme [54] to an s ∈ Zp is ob-
tained by sampling t←$Zp and computing com(s, t) = gsht. Hence, the com-
mitment com(s, t) is a value uniformly distributed in G and opening the com-
mitment requires to reveal the values of s and t. The Pedersen commitments
are additively homomorphic, i.e., starting from the commitment to s1 ∈ Zp
and s2 ∈ Zp, it is possible to compute a commitment to s1 + s2 ∈ Zp, i.e.,
com(s1, t1) ◦ com(s2, t2) = com(s+ 1 + s2, t1 + t2).

(Global) Universal Composability. In this work, the (Global) Universal
Composability or (G)UC framework [21,23] is used to analyze security. Due to
space constraints, we refer interested readers to the aforementioned works for
more details. We generally use F to denote an ideal functionality and Π for a
protocol. We implicitly assume private and authenticated channel between each
pair of parties.

Several functionalities in this work allow public verifiability. Following Badertscher
et al. [3] we dynamically allow the construction of a set of verifiers V through
register and de-register commands. The adversary, S will always be allowed to
obtain the list of registered verifiers. Concretely we implicitly assume all func-
tionalities with public verifiability include the following interfaces (which are
omitted in the concrete boxes for simplicity):

Register: Upon receiving (Register, sid) from some verifier Vi, set V ← V∪Vi
and return (Registered, sid,Vi) to Vi.

Deregister: Upon receiving (Deregister,sid) from some verifier Vi, set V = V\Vi
and return (Deregistered, sid,Vi) to Vi.
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Is Registered: Upon receiving (Is-Registered, sid) from Vi, return
(Is-Registered, sid, b) to Vi, where b = 1 if Vi ∈ V and b = 0 otherwise.

Get Registered: Upon receiving (Get-Registered, sid) from the ideal ad-
versary S, the functionality returns (Get-Registered, sid,V) to S. The above
instructions can also be used by other functionalities to register as a verifier of
a publicly verifiable functionality.

Global clock. As some parts of our work are inherently synchronous, we model
rounds using a global clock functionality FClock as in [3,40,43]. In Fig. 3 we show
the global UC clock functionality, FClock, we need, taken verbatim from the work
of Baum et al. [9]. We note that in the real execution all parties will send messages
to, and receive them, from FClock. Whereas in the simulated case only the ideal
functionality, other global functionalities as well as the corrupted parties will
do so. Throughout this work, we will write “update FClock” as a short-hand for
“send (Update, sid) to FClock”.

Functionality FClock

FClock is parameterized by a variable ν, sets P,F of parties and functionalities re-
spectively. It keeps a Boolean variable dJ for each J ∈ P ∪F , a counter ν as well as
an additional variable u. All dJ , ν and u are initialized as 0.

Clock update: Upon receiving a message (Update) from J ∈ P ∪ F :
1. Set dJ = 1.
2. If dF = 1 for all F ∈ F and dP = 1 for all honest P ∈ P, then set u← 1 if it is 0.

Clock read: Upon receiving a message (Read) from any entity:
1. If u = 1 then first send (Tick, sid) to S. Next set ν ← ν + 1, reset dJ to 0 for all

J ∈ P ∪ F and reset u to 0.
2. Answer the entity with (Read, ν).

Fig. 3: Global UC functionality FClock for the clock.

Signatures. We will implicitly assume access to a global digital signature
ideal functionality FSig as defined in [22] (where it is also shown any EUF-
CMA signature scheme realizes it), which is used for signing transactions to a
ledger. We also use a global UC secure threshold signature scheme which offers
identifiable abort. We denote this functionality FTSig and define it in Fig. 4
(which is taken verbatim from the work of Baum et al. [9]). The functionality
allows a set of n parties to collaboratively sign a message m, and allows the
adversary to corrupt up to n− 1 parties without being able to forge signatures.
That is, we assume the full-threshold setting. Thus its behaviour matches that of
FSig, although it additionally allows S to choose the string of shares that later get
combined into a signature. Although under the constraint that S has to choose
both the signature shares and the actual signature, σ, together. Although this
allows S to always make a valid signature, it is never allowed to make an invalid
signature in an honest execution of Share Generation. Based on the signature
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shares, the parties can learn σ from Share Combination, although if parties
have been cheating in Shares Generation they will be exposed during Share
Combination. We observe that the choice of shares binds S to a certain set of
dishonest parties. Note that by assuming both FSig and FTSig to be global UC
functionalities, it allows other UC functionalities, both local and global, to verify
signatures on them. This becomes essential to allow interaction with our, global,
ledger functionalities.

Functionality FTSig

FTSig is parameterized with an ideal adversary S, a set of signers P and functionalities
F , a verifiers V (which automatically contains P and F) and a set of corrupted signers
I ⊂ P. FTSig has two internal lists Sh and Sig.

Key Generation: Upon receiving a message (keygen) from each Pi ∈ P or
a functionality Fj ∈ F hand (keygen) to the adversary S. Upon receiv-
ing (verificationkey)vk from S, if (·, vk) was not recorded yet then output
(verificationkey)vk to each Pi ∈ P (or to Fj), and record the pair (P, vk).
If vk was recorded before then output (Abort) to S and stop.

Share Generation: Upon receiving a message (sign)m, vk from all honest par-
ties or a functionality Fj ∈ F send (sign)m to S. Upon receiving
(signature)m, ρ, σ, J, f from S, verify that

– no entry (m, ρ, J ′, vk′) with J ′ 6= J is recorded in Sh, and
– no entry (m,σ, vk, 0) is recorded in Sig if J = ∅.

If either is, then output an error message to S and halt. Else, let f ′ = 1 if J = ∅
and f ′ = f otherwise, record the entry (m, ρ, J, vk) in Sh, (m,σ, vk, f ′) in Sig

and return (shares)m, ρ.
Share Combination: Upon receiving a message (combine)m, ρ, vk from any party

in P or functionality Fj ∈ F , find (m, ρ, J, vk) in Sh and (m,σ, vk, b) in Sig. If
J 6= ∅ then return (Failure)J . If J = ∅ return (combined)m,σ, vk. If no entry
could be found in Sh and Sig then return (Not−Generated).

Signature Verification: Upon receiving a message (verify)m,σ, vk′ from some
entity in V, hand (verify)m,σ, vk′ to S. Upon receiving (verified)m,φ from S
do:

1. If vk′ = vk and (m,σ, vk, 1) ∈ Sig, then set f = 1.
2. Else, if vk′ = vk and (m,σ′, vk, 1) 6∈ Sig for any σ′, then set f = 0 and record

the entry (m,σ, vk, 0) in Sig.
3. Else, if there is an entry (m,σ, vk′, f ′) ∈ Sig recorded, then let f = f ′.
4. Else, let f = φ and record the entry (m,σ, vk′, φ) in Sig.

Return (verified)m, f .

Fig. 4: Global UC functionality FTSig for Threshold Signatures.

Non-interactive zero-knowledge. We us non-interactive zero-knowledge
arguments of knowledge, allowing any party to construct a proof that can later
be validated by any verifier. We model this in the same way as done by Groth et
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al. [36] and formally define the functionality FNIZK for this in Fig. 5 in Sec. B.
The functionality FNIZK allows any party to prove in zero knowledge that they
know a witness w for a public statement x such that (x,w) ∈ R for a NP relation
R.

Functionality FRNIZK

FNIZK interacts with parties P = {P1, ..., Pn} and simulator S and is parameterized
with relation R.

Proof: On input (Prove, sid, x, w) from party P , ignore if (x,w) 6∈ R. Send
(Prove, x) to S and wait for answer (Proof, π). Upon receiving the answer store
(x, π) and send (Proof, sid, π) to P .

Verification: On input (Verify, sid, x, π) from V, check whether (x, π) is stored. If
not send (verify, x, π) to S and wait for an answer (Witness, w). Upon receiving
the answer, check whether (x,w) ∈ R and in that case, store (x, π). If (x, π) has been
stored, return (Verification, sid, 1) to V, else return (Verification, sid, 0).

Fig. 5: UC functionality FNIZK for Non-interactive Zero-Knowledge

MPC. Secure Multi-Party Computation (MPC) allows a set of mutually dis-
trusting P = {P1, . . . , Pn} to compute any efficiently commutable function
f(x1, . . . , xn) = (y1, . . . , yn) where each party Pi supplied private input xi and
received private output yi. MPC guarantees that the only thing known to party
Pi after the computation is xi and yi. Multiple security and computational mod-
els exist for this, but in this paper we will assume the arithmetic black box model,
where computation is a directed acyclic graph of arithmetic operations over a
finite field F, where |F| = p ≥ 2s. We assume the UC-security against a static,
active/malicious adversary, who can corrupt up to n − 1 parties and who may
cause an abort at any point in the computation. We assume an MPC scheme,
which is reactive, meaning that it is possible to compute f(·) ,and depending on
the output, compute some other function f ′(·) on the same input as f(·). This
model can for example be realized by the SPDZ protocol [30]. For simplicity we
will assume the bracket-notation, where the function to be computed is specified
by arithmetic operations on hidden variables. Concretely we assume [·] expresses
a value hidden in MPC and on which arithmetic computations can be carried
out. I.e. [x] · [y] + [z], expresses the computation x · y + z of values x, y, z ∈ F.

Outsourced MPC. Typically MPC in the setting we need require a non-
constant amount of rounds of communication between all pairs of parties (de-
pended on the function to compute). If we have many parties supplying input this
can become prohibitively expensive. For this reason we introduce another model
of MPC known as outsourced MPC. Jakobsen et al. [37] shows how to use infor-
mation theoretic operation in conjunction with any MPC scheme as described
above, to allow a large set of clients C = {C1, . . . , Cm} to supply private input
to an MPC computation, executed by a small set of servers P = {P1, . . . , Pn},
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and receive private output. Crucially the clients only need to execute a few
lightweight operations, bounded by their amount of inputs and outputs, and
only need to communicate with the servers in a constant amount of rounds.

Insured MPC. It has been shown [26] that it is impossible to achieve fair-
ness in MPC when more than n/2 of the parties are corrupted. By fairness we
mean that if one party learns their output of the computation, so does the rest
of the parties. This is a problem since the party learning the output may be
malicious and thus maybe abort the protocol based on what they learned. Baum
et al. [7] show how to incentivize the completion of an MPC protocol, in a pub-
lic verifiable manner, through financial incentives enforced on a public ledger.
Specifically they showed this is possible to do, based on any MPC scheme fitting
the model discussed above. We combine this incentivized notion of MPC with
the outsourced notion of MPC in the functionality FIdent. Concretely this spec-
ifies an out-sourced MPC functionality where clients C = {C1, . . . , Cm} supply
private input that is computed on in MPC by the servers P = {P1, . . . , Pn} and
where the output of the computation is verifiably shared between the servers in
such a manner that the shares can verified by an external verifier V after the
completion of the protocol to identify any potential malicious behaviour. We
refer to appendix B.1 for a detailed description of FIdent and its interaction with
servers and clients.

B.1 Publicly Verifiable MPC Functionality FIdent

We adopt FIdent from [7,9] but include the following extensions to its interface.
Firstly, when realizing FIdent with a reactive MPC scheme such as [30,29], we
can amend FIdent with a reactive interface as in FOnline from [29], exposing arith-
metic operations over secret values, each identified with a unique vid , which are
selectively input or output to the parties.

In addition to a reactive interface, we permit clients to securely input values
to FIdent. This is realized with the secure client input protocol from [37], which
permits MPC servers to verify the linear MAC of the client input inside a reactive
MPC instance. We wrap this secure client input protocol inside FIdent (as in the
security proof of [37]) to obtain an input interface which can be called by clients.

Theorem 3. Functionality FIdent (in Figure 6) can be realized by a reactive
secure computation scheme permitting linear operations for free and the secure
client input protocol from [37].

Proof. (Proof sketch) The original, non-interactive FIdent functionality from [7]
can be extended with a reactive interface when realized with a reactive MPC
scheme [30,29] with minor adaptations of the UC-proof in [7]. The secure client
input protocol of [37] is information-theoretically secure, and can be instantiated
with any MPC scheme with free linear operations, including [30,29], thereby
realizing reactive and client input interfaces of FIdent in Figure 6.
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Functionality FIdent

For each session, FIdent interacts with servers P = {P1, . . . ,Pn}, clients C =
{C1, . . . , Cm} and also provides an interface to register external verifiers V. S provides
a set IP ⊂ [n] of corrupt parties and IC ⊆ [m] of corrupt clients. FIdent only interacts
with P, C,V and Sa of the respective session sid.

Init: Upon first (Init, sid) by all parties in P set rev, ver, ref← ∅.
Input: Upon first (Input, sid, x) by Cj , forward (Input, sid, Cj) to S. If S continues,
FIdent samples vid , stores (vid , x) and returns (Input, sid, Cj , vid ) to all P.

Evaluate: Upon first (Eval, sid, g, vid 1, ..., vid p) by all parties P, if (vid 1, ..., vid p)
have been stored internally:
1. Compute xp+1, ..., xp+q ← g(x1, ..., xp), sample vid p+1, ..., vid p+q.
2. Store (vid p+1, xp+1), ..., (vid p+q, xp+q), return (vid p+1, ..., vid p+q) to all parties.

Get Shares: Upon first (GetShare, sid, vid ) by Pi ∈ P and if (vid , x) is stored:

1. For Pi ∈ IP , let S provide s
(i)
vid ∈ F. For Pi ∈ IP , let s

(i)
vid

$← F s.t. x =
∑
i∈[n] s

(i)
vid .

2. Return (Share, sid, vid , s
(i)
vid ) to Pi.

Open with identifiable abort: All interfaces below are specific to a (vid , ·).
Share: Upon first (Share, sid, vid ) by Pi ∈ P and if (vid , x) is stored, sample
shares as in Get Shares if not previously done and and store locally.

Optimistic Reveal: Upon (Optimist-Open, sid, vid ) by each honest Pi and if
Share for (vid , x) was run, then send (Output, sid, vid , x) to S. If S continues,
send (Output, sid, vid , x) to each honest Pi, otherwise send (Output, sid, vid ,⊥).

Reveal: Upon (Reveal, sid, vid ) by Pi, if i 6∈ rev[vid ] send (vid , i, s
(i)
vid ) to S.

1. If S continues, set rev[vid ]← rev[vid ] ∪ {i}, send (Reveal, sid, i, s
(i)
vid ) to all P.

2. Else if S sends (Reveal-Not-Ok, sid, vid , i, J) with J ⊆ IP , J 6= ∅,
send (Reveal-Fail, sid, vid , i) to all P and set ref[vid ]← ref[vid ] ∪ J .

Test Reveal: Upon (Test-Reveal, sid, vid ) from a party in P ∪ V
1. If ref[vid ] 6= ∅, return (Reveal-Fail, sid, vid , ref[vid ])
2. Otherwise return (Reveal-Fail, sid, vid , [n] \ rev[vid ]).

Allow Verify: Upon (Start-Verify, sid, vid , i) from party Pi ∈ P set ver[vid ]←
ver[vid ] ∪ {i}. If ver[vid ] = [n] then deactivate all interfaces for vid except Test
Reveal and Verify.

Verify: Upon (Verify, sid, vid , z(1), . . . , z(n)) by Vi ∈ V with z(j) ∈ F:
1. If ver[vid ] 6= [n] then return (Verify-Fail, sid, vid , [n] \ ver[vid ]).
2. Else if ver[vid ] = [n] and rev[vid ] 6= [n], send to Vi what Test Reveal sends.

3. Else set ws← {j ∈ [n] | z(j) 6= s
(j)
vid } and return (Open-Fail, sid, vid , ws).

a Throughout Init, Input, Evaluate and (Get) Share, S can at any point abort,
upon which FIdent:rct sends (Abort,⊥) to all parties and terminates.

Fig. 6: UC functionality FIdent for reactive MPC with Publicly Verifiable Output.

Identifiable aborts during the output phase. We provide an overview of
the execution of a generic protocol π in the FIdent-hybrid setting, where π can
either obtain the output of an MPC secure evaluation on private client inputs
performed by an FIdent instance, or identify cheating parties.
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Fig. 7: Output phase of FIdent with verifiable output.

Following the secure evaluation on the client inputs, honest parties of π per-
form the following. Upon sending Optimistic Reveal to Fident, honest parties
will either (2a) obtain the output y = (y1, ..., ym), where yi denotes the out-
put for client Ci ∈ C, or (2b) only the adversary obtains y. In either state
(2a)/(2b), the honest parties of π can always reach a state of FIdent via Reveal
and Allow Verify, in which either (4a) shares s(i) for each server Pi ∈ P are
received by all parties, that are verifiable by by V and from which y =

∑
i∈[n] s

(i)

can be reconstructed, or (3b)/(4b) the verifier V can identify cheating servers.
The interfaces of FIdent exposed to the public verifier V are central to the

arbitration of an abort in protocol π. Here, a smart contract playing the role
of public verifier V can identify the set of cheating servers therefore enforce a
financial penalty agreed upon prior to the adversary learning y.

C Ledger Functionalities

C.1 Public ledger functionality

In Figure 8 we describe the ideal functionality FLedger. It reflects a general public
ledger, with the support for transfers of tokens through signatures, along with
Turing complete smart contracts, modeled as arithmetic circuits over F. It re-
quires access to the global UC functionalities of FClock, for a notion of rounds,
and F(T)Sig for signature validation.

Beyond its authenticated bulletin board functionality, on which it is based,
FLedger parses all the newly received, signed messages and updates its public
state accordingly on the first activation of each FClock round. In addition to
authenticated messages, we define its public state to include a public ledger over
a default token universe, maintaining balances associated with each signature
verification key observed in the authenticated message list. Furthermore, FLedger

will maintain public state of smart contracts instances, each deployed with a
transition function encoded as arithmetic circuits.

Interaction with UC functionalities. We permit smart contracts deployed
to FLedger to pass messages to external UC functionalities. This is required in or-
der for a smart contract instance to evaluate the verification of proofs generated
by a FRNIZK instance or shares output by FIdent. Interaction in the GUC model
is permitted for global functionality FLedger and other global UC functionalities,
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Functionality FLedger

FLedger interacts with global functionalities FClock, FSig, FTSig. It is parameterized by
a token universe T = {τ0, ..., τt} and maintains public ledger state L : {0, 1}∗ → Z|T|,
public contract states Γ : Z → {0, 1}∗ and a contract counter ctr ∈ Z. FLedger has
an initially empty list M of messages posted to the authenticated bulletin board.
Further, it interacts with committee parties Q = {Q1, ..., Qq}.

Upon each activation FLedger first sends a message (Read, sid) to FClock. If ν has
changed since the last call to FClock, then it parses all messages in M′ ←M\Mread

in listed order as follows:

Init: Upon parsing ((Init, sid,Linit), vk) ∈ M′, set L ← Linit, deactivate the parsing
of Init messages and activate parsing of Transfer,Deploy,Call messages.

Transfer: Upon parsing ((Transfer, sid, v̄, vkrcv), vk) ∈ M′, assert L[vk] ≥ v̄. Set
L[vkrcv]← L[vkrcv] + v̄ and L[vk]← L[vk]− v̄.

Deploy Contract: Upon parsing ((Deploy, sid, γ, T ), vk) ∈M′, parse initial state
γ ∈ {0, 1}∗ and T as an arithmetic circuit over F of maximum depth dT . Update
Γ ← Γ ∪ {(cn = ctr, (γ, 0̄, T ))} and contract id counter ctr← ctr + 1.

Call Contract: Upon parsing ((Call, sid, (cn, fn, x, v̄)), vk) ∈M′, assert L[vk] ≥ v̄.
Read FClock round ν, obtain contract state, balances and circuit (γ, w̄, T ) ← Γ [cn]
and evaluate circuit T on inputs (ν | γ | w̄ | cn, fn, x, v̄ | vk), which outputs an encoding
of a state transition ts, L | γ | w̄→ts L′ | γ′ | w̄′, updating ledger, contract state and
balance.
1. T is permitted “callback” gates which specify:

a. Fragments of state L | Γ to read during evaluation of T .
b. External functionality F and message m to send:

- Forward (ExtCall, sid,F,m) to all Q who output this forwarded message.
- Upon (CallBack, sid, ret) from each Q, write replies to call-back gate;

the majority response from Q is read by the circuit upon continuation.
2. On completed evaluation of T , assert:

a. Preservation of tokens: w̄ +
∑

vk∈dom(L) L[vk] = w̄′ +
∑

vk∈dom(L) L
′[vk]

b. No outflow from non-calling accts: ∀vk′ ∈ dom(L), vk′ 6= vk : L′[vk′] ≥ L[vk′].
3. Set L ← L′ and Γ [cn]← (γ′, w̄′, T ).

After parsing M′, it sets Mread ←M and sends (Update, sid) to FClock.

Post: Upon receiving (Post, sid,m, vk, σ) from some entity contact the instance of
FSig or FTSig belonging to vk. If σ verifies for m and vk then send (Post, sid,m, vk, σ)
to S and append (m, vk) to the list M.

Read: Upon receiving (Read, sid) from some entity, return M.

Fig. 8: Functionality FLedger for Public Ledger and Smart Contracts.

such as FClock. However, lifting the model of FIdent or FRNIZK to global functional-
ities greatly complicates the definition of any functionality realized in the FIdent,
FRNIZK-hybrid setting, as the simulator can no longer equivocate outputs from
FIdent without simulating its internal state as a hybrid functionality, and extrac-
tion of a global FRNIZK would imply a realization by less efficient constructions.
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Although we do not model consensus details with FLedger, we argue that such
a protocol must ultimately realized in the presence of an honest majority com-
mittee. Thus, we adopt this assumption with an honest-majority committee of
dummy parties Q = {Q1, ..., Qq} interacting with FLedger, that forward verifi-
cation calls between FLedger and the environment Z. Concretely, we permit the
deployed contract circuits to feature call-back gates, which indicate an external
functionality and message (F,m) that is forwarded to Q by FLedger.

- Upon receiving (ExtCall, sid,F,m) from FLedger, an honest party in Q then
returns this message to Z and waits for a response.

- Upon input (CallBack, sid,F, ret) from Z to the same party Q ∈ Q, it
forwards this message to FLedger, which writes the majority response to the
call-back gate.

The utility of forwarding (F,m) to the environment via dummy parties Q be-
comes immediate in the F, FLedger-hybrid setting: here, the parties in the roles
of Q, upon receiving (ExtCall, sid,F,m) from FLedger will call hybrid func-
tionality F with message m, and return the response to FLedger. If Q maintains
an honest majority, we obtain correctness of the verification replies returned to
FLedger. We emphasize that this is a necessary modelling artifact arising from the
constraints of the GUC-framework: in actual realizations we argue the parties in
Q are the same parties which jointly realize the underlying ledger functionality
as mining or staking parties.

C.2 Confidential ledger functionality

In Fig. 9 we describe the confidential token ledger functionality, FCLedger we
require in our main construction. FCLedger. It assume access to the FLedger func-
tionality in Fig. 8.

D Protocols

We detail the various protocol realizations of our scheme and their supporting
smart contract programs.

D.1 Protocol realizing FCLedger

In Fig. 10 we show how to realize our confidential token functionality FCLedger

from Fig. 9 on any Turing complete ledger, with the help of the smart contract
XCLedger of Fig. 11.

Theorem 1. Protocol ΠCLedger GUC-realizes functionality FCLedger in the FClock,
FLedger, FNIZK, FSetup, FSig-hybrid model against any PPT-adversary corrupting
any minority of committee Q.
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Functionality FCLedger

FCLedger interacts with parties C = {C1, ..., Cp}. It is parameterized with token uni-
verse T and max. balance v̄max ∈ Z|T| and maintains public ledgers L and LConf, where
LConf maps account keys to confidential coins with hidden balances. The functionality
is registered at global FClock.

Public ledger states are updated at the beginning of each clock round. On each
activation, FCLedger reads FClock and if ν is increased since the last activation, sets
L ← L′, LConf ← L′Conf. Initially, only GenAcct and Init interfaces are activated.

GenAcct: Upon (GenAcct, sid) from C, forward (GenAcct, sid, C) to S. Upon
obtaining fresh vk from S, set K[C]← K[C] ∪ {vk}. Return (AcctKey, sid, vk).

Init: Upon receiving (InitLedger, sid,LInit, vk) from any Ci ∈ C, forward to S. Set
L′ ← LInit and deactivate Init and activate all other interfaces.

Transfer: Upon (Transfer, v̄, vkrcv, vk) from C,
- Assert vk ∈ K[C] and forward message (Transfer, v̄, vkrcv, vk) to S.
- If L′[vk] ≥ v̄, set L′[vkrcv]← L′[vkrcv] + v̄ and L′[vk]← L′[vk]− v̄.

Mint: Upon (Mint, sid, v̄, vk) from C,
1. Assert L′[vk] ≥ v̄ and forward (Mint, sid, v̄, vk) to S and wait for id from S.
2. Set L′Conf[vk]← L′Conf[vk]∪{〈id, v̄〉} & L′[vk]← L′[vk]−v̄, return (Minted, sid, id).

Confidential Transfer: Upon (ConfTfr, sid, vkrcv, id1, id2, v̄
′
1, v̄
′
2) from C,

1. Assert ∃vk ∈ K[C] : 〈idi, v̄i〉 ∈ L′Conf[vk] for i ∈ {1, 2}.
2. Assert v̄1 + v̄2 = v̄′1 + v̄′2 and v̄i ≤ v̄max for i ∈ {1, 2}.
3. Forward (ConfTfr, sid, vkrcv, id1, id2) to S, and wait for (id′1, id

′
2).

4. For i ∈ {1, 2}:
- Set L′Conf[vk]← L′Conf[vk] \ {〈id1, v̄1〉, 〈id2, v̄2〉} ∪ {〈id′2, v̄′2〉}
- Set L′Conf[vkrcv]← L′Conf[vkrcv] ∪ {〈id′1, v̄′1〉}.

5. If vkrcv ∈ K[C′] s.t. C′ ∈ I, send (〈id′1, v̄′1〉) to S. Return (Change, sid, id′2).

Confidential Receive: Upon (ConfRcv, sid) from C,
- Return (Received, sid, (vk1, 〈id1, v̄1〉), ..., (vkl, 〈idl, v̄l〉)), containing coins sent to
C since the last call, where vki ∈ K[C] for i ∈ [l]

Redeem: Upon (ConfRdm, sid, id) from C,
1. Assert ∃vk ∈ K[C] : 〈id, v̄〉 ∈ L′Conf[vk].
2. Remove 〈id, v̄〉 from L′Conf[vk] and set L′[vk]← L′[vk] + v̄.
3. Send (ConfRdm, sid, 〈id, v̄〉, vk) to S.

GetLedger: Upon (GetLedger, sid), compute sanitized L′′Conf such that coin bal-
ances are removed from LConf. Return L, L′′Conf.

Fig. 9: Functionality FCLedger for Confidential Ledgers.

Proof (Proof of Theorem 1). We construct a simulator S that interacts with A,
hybrid functionalities FLedger, FNIZK and global functionalities FClock, FSig such
that FCLedger ◦ S ≈ ΠCLedger ◦ A for any PPT environment Z.

Concretely, to create an interaction indistinguishable from a protocol tran-
script in the composed setting, we construct a simulator S that generates valid
messages for global FLedger from simulated honest client activations and extracts
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inputs from dishonest messages and forwards these to ideal functionality FCLedger.
This ensures consistency of A’s view of FLedger with the state of FCLedger during
the simulated protocol execution.

On an honest GenAcct input, S generates a fresh signature verification
key for the honest client from FSig, which it stores. For any subsequent honest
input to FCLedger which is forwarded to S, the simulator can generate and post
verifying messages global functionality FLedger.

For honest InitLedger, Transfer inputs, generating verifying messages to
post on FLedger is trivial for S, as it generates and stores signature verification
keys for honest clients. On observing dishonest InitLedger, Transfer mes-
sages on FLedger and asserting that they are accepted by XCLedger, the simulator
can extract all dishonest inputs to forward to FCLedger, as these messages are
posted to FLedger in cleartext.

On an honest Mint input, S must generate and send a verifying Call mes-
sage to FLedger with the minted amount v̄ which activates the deployed XCLedger

contract instance to mint a fresh confidential token. Since S simulates protocol
messages from honest clients, it can generate a valid commitment for XCLedger

itself and store its opening (v̄, r). With the commitment opening, it obtains
a verifying NIZK via FRNIZK proving R(v̄, c; r) = {c = gv̄hr}. For a dishonest
mint message observed on FLedger by S, the simulator trivially extracts inputs
for FCLedger: both minted amount and minting account key in the Call mes-
sage sent to activate minting in the XCLedger contract instance are observable in
cleartext on FLedger.

On an honest ConfTransfer input, S generates valid coin commitments
and rangeproofs for a call activating ConfTrfr on the XCLedger contract in-
stance deployed to FLedger. For an honest sender and honest recipient, S needs
to generate output coin commitments that are consistent with the chosen input
coins for the simulated protocol. Here, S always possesses the openings of the
input coin commitments:

- Coins previously received from an honest sender were generated by S with ar-
bitrary openings previously generated by S: since S does not learn the trans-
fer amount for confidential transfer between honest users, it generates output
coins commitments with arbitrary balances, such that the product equality of
input and output commitments holds: gv̄1hr1gv̄2hr2 = gv̄′

1hr
′
1gv̄′

2hr
′
2 . How-

ever, since simulated setup functionality FSetup samples s←$Fp and outputs
h = gs, coins generated by S can later be equivocated to any value.

- Coins previously received from a dishonest sender feature openings sent di-
rectly to the receiving honest client simulated by S in the simulated protocol.

Thus, for an honest confidential transfer sending coins to another honest party, S
generates output coin commitments with arbitrary chosen coin balances, stores
their openings and obtains verifying rangeproofs via FRNIZK. For an honest sender
and dishonest recipient, S learns the transferred amount from FCLedger, and
can generate output coin commitments with correct balances and post these
to FLedger (with equivocation of the input coin commitments if necessary). Then,
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it forwards the coin openings as a simulated protocol message to the dishonest
recipient.

Finally for a dishonest sender and dishonest recipient S can extract open-
ings for all coins generated by the dishonest sender since they all have associ-
ated NIZK’s obtained by sending valid coin openings to the simulated FRNIZK

instance. Thus, the simulator can forward the transferred amounts to FCLedger.
For a dishonest sender and honest recipient, the simulated honest recipient ob-
tains transferred coin commitment opening as a protocol message, allowing S to
forward this input to FCLedger.

On an honest ConfReceive, the simulator must have previously provided
inputs to FCLedger for confidential transfers initiated by dishonest parties, as
previously described. On a dishonest confidential receive, S will have previously
sent the openings of the honestly sent coins to the dishonest recipient as a
protocol message, in addition to having generated valid coins and rangeproofs
observable on FLedger.

On an honest ConfRedeem, if the redeemed coin was originally sent by a
dishonest user, S must have also received its opening as a protocol message ,
as it simulates the role of the honest user in the protocol execution. Otherwise,
the redeemed coin must have been sent by an honest user, and can thus be
equivocated by S. Thus, with the equivocated coin opening, S can produce a
verifying NIZK for the honest redeem action in the simulated protocol view. On
a dishonest redeem, S observes the redeemed value publicly on FLedger, and can
thus forward this input to FCLedger.

As long as the majority of parties in Q are honest, verification responses from
FRNIZK are interpreted correctly by the call-back gate on XCLedger. Thus, the public
state of LConf on XCLedger observed in the simulated protocol view is consistent
with the confidential ledger maintained by FCLedger.

Finally, we note that the updates to ledger states induced by client activations
are applied at the beginning of each FClock round in both global FLedger and ideal
functionality FCLedger. ut

D.2 Protocol realizing FCContract

ΠCContract[ΠCLedger ]

FNIZK FSetup
FLedger

(Global)

FSig

(Global)
FIdent

FTSig

(Global)

FClock

(Global)

In Fig. 12 and 13 we show how to realize our privacy preserving smart con-
tract functionality FCContract from Fig. 2 on any Turing complete ledger, with
the help of a smart contract with code of XLock of Fig. 14 to manage confiden-
tial tokens and XCollateral of Fig. 15 to manage underlying collateral. Note that
ΠCContract extends ΠCLedger, and similarly that contract XLock extends XCLedger.



Eagle: Efficient Privacy Preserving Smart Contracts 35

Theorem 2. ΠCContract[ΠCLedger] realizes FCContract[FCLedger] in the FClock, FIdent,
FLedger, FNIZK, FSetup, FSig, FTSig-hybrid model against any PPT-adversary cor-
rupting at most n− 1 of the n servers P statically and any minority of Q.

Proof. (Theorem 2) We construct a simulator S that interacts with A, hybrid
functionalities FIdent, FNIZK, and global functionalities FClock, FLedger, FSig, FTSig

such that FCLedger ◦ S ≈ ΠCLedger ◦ A for any PPT environment Z.

Upon an honest Init, the simulator S simulates the roles of the honest parties
in the simulated protocol execution, and jointly generates a threshold signature
verification key with the dishonest parties via FTSig. It simulates GenAcct and
InitLedger as in FCLedger. As S generates the signature verification key for each
honest server, it can call FSig and generate verifying messages for the simulated
honest server to post on global FLedger, observable by A. Since ΠCContract extends
ΠCLedger, S signs messages that initialize contracts XLock[XCLedger] and XCollateral,
and can authorize collateral deposits to the contract instance XCollateral on FLedger.

Upon an honest Enroll, the simulator is forwarded the input client coin
identifier and account verification key. S simulates the honest party by generating
output masks for which it samples the random openings. Then it determines valid
openings for the honest input coin:

- If the honest input coin was previously transferred by a dishonest party, sim-
ulator S can extract its opening from the NIZK range-proof generated via
simulated hybrid FRNIZK.

- If the honest input coin was previously transferred by an honest party, S must
have generated the openings itself (See simulator of FCLedger).

In either case, the simulator sends valid openings of both honest input coins and
mask commitments to hybrid FIdent.

Subsequently, the simulator can simulate a consistent protocol execution of
Verify input which only aborts if A provides inputs to simulated hybrid FIdent

that are inconsistent with the input coin and mask commitments sent to XLock

on simulated FLedgerVM. It simulates the batched sigma protocol to check input
consistency in the simulated execution of Verify input in ΠCContract. Inconsis-
tency of inputs must arise from cheating by A and results in an abort. As shown
in Section 3.1, the probability that the simulated protocol aborts due to incon-
sistent inputs whilst the ideal functionality continues is negligible in the group
order of the Pedersen commitment scheme.

Upon an honest Evaluate and its successful completion, the simulator will
jointly sign eval via FTSig with the dishonest parties.

Upon an honest Open, the simulator first observes what FCContract outputs,
and then will modify the state of the simulated FIdent instance, such that the
adversary in the simulated protocol observes the masked outputs consistent with
what FCContract outputs.

Upon an honest Withdraw, the simulator does nothing. At each FClock

round during the simulated protocol execution, if the adversary aborts, S will
forward an abort to FCContract. If a dishonest party cheats during the Open phase
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of the simulated protocol execution it will be identified by the simulated FIdent

instance, and its identity is forwarded to FCContract by S.
S simulates the honest parties of committee Q in the simulated protocol exe-

cution. As long as the majority of parties in Q are honest, verification responses
from FIdent are interpreted correctly by the call-back gate on XLock, permitting
the cheating parties in the simulated protocol execution to be correctly identified
during an abort. ut

E Confidential contract extensions

Multi-round confidential contracts. We now demonstrate how our default
model of confidential contracts, shown in previous sections, can be extended to a
multi-round model, where clients can provide fresh inputs and obtain continuous
outputs in a long-running confidential blockchain application.

This is facilitated by our model of confidential contracts, which does not
require server-client interaction beyond the Open phase, along with the reactive
interface of our MPC functionality (Appendix B.1), which permits the selective
opening of secrets and indefinite number of circuit evaluations on stored secret
values. This allows the set of MPC servers to keep an internal secret shared
state, off-chain. Furthermore, since we use outsourced MPC [37] and rely on a
reactive MPC scheme, any multi-round computation can simply be considered a
single reactive computation, with interleaved input and output. In fact, clients at
most hold a state dependent on their own input and expected outputs through
out execution of MPC. Thus whatever confidential state is needed, the MPC
servers will simply store this secretly, and collectively, throughout the multiple
computations of the private smart contracts with different clients giving input
and receiving output.

Consider one confidential contract execution and let, without loss of gen-
erality, the confidential state of a client be a tuple consisting of a numerical
value and balance: [ sj ] = ([ yi ], [ w̄i ]). Further, let the confidential contract
state be defined over all confidential client states st = ([s1], ..., [sm]), which is
stored from the previous contract evaluation round or given as the initial confi-
dential contract state. We define a confidential contract state transition that
consumes a fresh set of confidential contract inputs stin = ([sin

1 ], ..., [sin
m]) =

(([xin
1 ], [ v̄in

1 ]), ..., ([xin
m ], [ v̄in

m ])), such that the the current contract circuit g is
evaluated over both st and stin to obtain a new confidential state st′ and an
encoding of the updated circuit g′ to be evaluated in the next round.(

[ g′ ], [ s′1 ], ..., [ s′m ]
)
← evalg

(
[sin

1 ], ..., [sin
m], [ s1 ], ...., [ sm ]

)
Upon successful completion of a round evaluation, circuit g′ will be securely
opened, stored and evaluated by the servers in the following round. Each client
can retrieve its new state by executing Withdraw.

However, the set of clients wishing to give input to a confidential contract
evaluation might not always be the same. Thus we now argue a simple extension
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to our FCContract model to permit clients can selectively participate in the Enroll
phase of a round, or to skip a given round by ticking the FClock after calling a
Skip Round interface.

We propose an output budget for each client corresponding to the number of
unused, pre-processed output masks: in each round, a client will receive a masked
output which can be retrieved from the contract XLock on FLedger, regardless
whether it provides a new input and participates in Enroll: masked outputs for
a specific client are generated in each round until its pre-processed output masks
have been consumed. The evaluation of the confidential contract in each round
is still evaluated over all clients and their secret state st = ([s1], ..., [sm]), even
if only a subset have provided fresh inputs for a round. A client Skip implies
evaluating the contract circuit over default input values.

Each participation in an Enroll phase of a round permits a client to re-
store its depleted output budget, by generating masks in commitment form and
inputting their openings to the MPC instance, which are subsequently verified
for consistency in the Verify Input protocol phase. Each output mask can be
associated with a fee paid to the servers executing the MPC: once all output bud-
gets (and associated output masks) are consumed, the multi-round confidential
contract can terminate safely.

We observe, that this approach also implies that the expensive Init phase
only needs to be carried out once, assuming the set of MPC servers don’t change
and no server actively cheats (i.e. causes the execution of the abort phase to an
extend where a malicious server is identified at the smart contract level). Thus,
servers only need to setup threshold keys, smart contracts and collateral once,
but naturally need to reevaluate this setup in case a server is confirmed to cheat
and penalized.

Mitigation of token minting. Under full server corruption, it is possible
for the adversary to mint confidential balances beyond the supply of underlying
tokens wrapped by FCLedger. This is because in our default protocol ΠCContract

shown in Figure 12, any output coin distribution accompanied by a verifying
threshold signature (via FTSig) will be accepted by XLock; no coin sum-checks or
range-proofs enforce the preservation of confidential token supplies (See Equa-
tion 1). This is not publicly detectable, even if XLock implemented a product
consistency check over input and output coins with correlated commitment ran-
domness,

∏
j∈[m] cj =

∏
j∈[m] c

out
j , as hidden balances can exceed v̄max = 2l − 1,

and p additional units of each token type can be minted.

There are several ways in which this can be mitigated. If we accept client
interaction during the output phase, then the client can simply retrieve their
output commitments as part of the protocol and subsequently generate range-
proofs and a zero-sum proof over input and output coins and post this to the
smart contract XLock. The smart contract can then validate these proofs and
thus ensure that no tokens have been minted or destroyed as part of the pri-
vate smart contract execution. Unfortunately, this also allows a single malicious
client to abort the execution and goes against our goal of minimizing client in-
teraction. Instead we suggest an approach based on bit-decomposition of token
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amounts, along with the masks. Based on the decomposition, the zero-sum prop-
erty of input and output coin commitments (Equation 1) is ensured by a proof to
XLock, constructed by the servers without the need for computing cryptographic
primitives inside the MPC circuit.

More concretely, in the following we show an extension of ΠCContract that
prevents the minting of tokens under full server corruption, at the cost of a
constant-factor increase in communication complexity. This is based on the bit
decomposition approach as in Banerjee et al. [4], but greatly improves on the pro-
tocol efficiency by not requiring any NIZK’s and commitments to be generated
inside the MPC circuit.

Let l be the number of bits such that each coin balance does not exceed
v̄max ≤ 2l − 1. In the Enroll phase, clients each generate bit a commitment
pair (c0 = com(b0, s0), c1 = com(b1, s1)) for each bit position k ∈ [l], such that
bi = 0 ∧ bi−1 = 1 for random i←$ {0, 1}. Let π denote the bit permutation
sampled by the client for the bit position k ∈ [l], such that:

π(k) =

{
0 bk,0 = 0 ∧ bk,1 = 1

1 bk,0 = 1 ∧ bk,1 = 0

This permutation on the individual bits is later used to mask the bit-decomposed
output. Commitment pairs are posted to FLedger, together with an efficient sigma
proof that commitments are to bit values [35], incurring an additional commu-
nication complexity logarithmic in the size of the commitment group order.

During the Enroll phase, users input the opening to these bit commitment
pair in the permuted order:

([ v̄ ], [ r̄ ], {([ b0,k ], [ s0,k ], [ b1,k ], [ s1,k ])}k∈[l])

where cin = (v̄, r̄) is the opening to the confidential input coin, and each tuple
(b0,k, s0,k, b1,k, s1,k) is the opening to the k’th bit commitment pair with per-
muted bit ordering. We adopt a well-formedness check on bits input to FIdent

from [33]: servers assert for each k ∈ [l] bit position, that one of [ bk,0 ], [ bk,1 ]
holds the value 1 and the other holds the value 0. Concretely, for bit pair
([ b0 ], [ b1 ]), servers jointly sample and open α, β, γ, ←$F, and compute:

[ t ] = α · ([ b0 ] · [ b0 ]− [ b0 ]) + β · ([ b1 ] · [ b1 ]− [ b1 ]) + γ · ([ b0 ] · [ b1 ])

[ t′ ] = ([ b0 ] + [ b1 ])

Upon securely opening t and t′, servers assert that t = 0 ∧ t′ = 1. Consistency
between all commitments and their openings input to FIdent are verified during
Verify input phase by the servers.

Importantly, the financial output of a client is output in bit-decomposed form,
where individual bits are permuted in the ordering as chosen by the clients.

(b′1, ..., b
′
l)
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Let (b1, ..., bl) denote the true bit-decomposition of a clients output balance.
Then b′k = bk if π(k) = 0 and is bit permuted otherwise, where π denotes the
permutation chosen by the client in the enroll phase.

For contract XLock to generate the client output coin from bit commitments
submitted during Enroll, it computes.

cout =
∏
k∈[l]

c2
k

k,i where i = b′k ∈ {0, 1}

Here, note that b′k is interpreted as selector for bit commitment pair (ck,0, ck,1) for
bit position k. As both b′k = i and the bit message of ck,i are permuted by π(k),
the hidden balance of cout is unmasked. Given the generation of output coins
from l bit balance representations, confidential output balances are bounded by
2l − 1 = v̄max.

It remains to prove consistency between input and output commitments to
XLock to ensure no token minting occurred. For this, servers compute the commit-
ment randomness for each client output coin and the difference in commitment
randomness between the input and output coins.

[ sout ] =
∑
k∈[l]

2k · [ sk,i ] where i = b′k ∈ {0, 1} [ r̄diff ] =
∑
j∈[m]

[ r̄in,j ]− [ sout,j ]

Servers locally compute hr̄
(i)
diff over the local share value of [ r̄diff ] and send it to

all other servers. Each server then reconstructs hr̄diff and verifies that sum of
confidential input and output balances must be equal and that no tokens are
minted (balance over-flow is mitigated by bounding output balances by 2l − 1).∏

j∈[m]

cin,j = hr̄diff ·
∏
j∈[m]

cout,j

We outline the overhead of this approach to prevent malicious minting when

Table 4: Complexity of the per user overhead by using the stand-alone token minting
mitigation approach.

Exponentiation MPC mult.

User 6 · l 0

Server 8 · l + 1 42.5 · l + 15

Comm. #Gelem. O(n · l) O(n2 · l)

all servers are corrupted in Tab. 4, when assuming that Schnorr proofs are added
for each commitment to allow extraction (though not in UC) and when using
the work of Reistad and Toft [56] to do the needed bit decomposition in MPC.
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F Applications

In this section we briefly outline some interesting application which privacy
preserving smart contracts can help facilitate, along with our scheme can be
used to provide privacy preserving side-chains and how it can be extended to
allow for privacy preserving cross-chain smart contracts.

F.1 Privacy preserving applications

Several general applications for privacy preserving smart contracts have already
been suggested in previous works. We briefly outline some of these here.

Auctions Auctions of digital goods, or digital deeds linked to physical goods,
can be constructed simpler and more efficiently than with non-privacy preserving
smart contracts. Our solution could be used to implement first and second price
auctions securely and privately. Concretely confidential tokens reflecting the
maximum bid each user should be transferred to a privacy preserving smart
contract along with the good for sale. The smart contract then compares the
bids and transfers ownership of the good and handles the payment and refunding,
according to code of the smart contract being executed in MPC.

Identity management Decentralized Identity (DID) management is the idea
that, by using blockchains, users remain in charge over how their private at-
tributes (certified by an appropriate authority) are used online. Multiple schemes
for this has been suggested such as Sovrin [42] or CanDID [49]. However, these
schemes generally only consider leveraging the blockchain for storing user’s at-
tribute information. However, using privacy preserving smart contracts would
allow integration of user-certified attributes in both the web 2 and web 3 space.
Concretely the users could give their hidden certified attributes as input the
privacy preserving smart contract, which can validate them privately and use
the content of these attributes to affect its business logic. For example the at-
tributes can be used to decide the price of an NFT or to validate whether a user
is privilege enough to execute certain commands of the contract.
Mixer Our structure can naturally be extended to allow for a mixing func-
tionality. While several other technologies exist for this, we observe that doing
this in MPC allows several advantages that can prevent the mixing to be used
for money laundering. Concretely we could imagine that KYC (Know Your Cus-
tomer) information linked to the users’ blockchain address must be given and
privately validated against deny-lists, to prevent criminals using this service.
Even if deny-lists are not in use, linking to an actual identity could also be lever-
aged to allow a given user to only get privacy on the first x amount of tokens
they mix, and after that, information on the token amount will become public.

F.2 Anonymous side-chain

Our solution could also be used to construct privacy preserving side-chains.
When no server is trying to cheat, there is technically no need for the MPC
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servers to post anything related to the specific clients and their input to the
blockchain, after the evaluation phase. Thus the MPC servers can alone realize
a privacy preserving side-chain where they in MPC hold the opening information
to the commitments of hidden tokens. Thus users can request transfers to other
users in this side-chain, if the servers just use the MPC scheme to keep track
of how many tokens each user has. At certain intervals, each user can then just
decide to get paid back whatever they hold in the side-chain, by the execution
of the open and withdraw phases. This can be used to enhance the anonymity of
hidden transfers, since now only the MPC servers know the transaction graph,
and yet they do not know the transaction amounts. An interesting observation
with this case is also that the side-chain will be faster and cheaper to use than
the underlying layer 1 blockchain, since it will only be managed by the MPC
servers.

F.3 Cross-chain Exchange

In section we will discuss how to use the ideas of P2DEX [9] to make our scheme
capable of doing confidential computation and transactions across multiple layer
1 blockchains.

Decentralized exchanges. When it comes to decentralized exchange, multiple
approaches exist but generally fall into one of the following families:

P2P Two parties, each with tokens on a chain the other decide, agree on doing
an exchange with a certain exchange rate. This is for example the approach used
in hash-proofs [58]. This unfortunately requires multiple rounds of on-chain
interaction, fees, not to mention the issue of having parties find each other.
Exchange chain A chain contains wrapped tokens pegged to their native
counterparts through holding smart contracts on all the native chains. This
allows to reduce the cross-chain exchange problem to an on-chain problem, as-
suming the problem of inter-chain communication has been solved. With an
exchange chain in place there are multiple ways of facilitating exchanges, since
now the problem is reduced same-chain exchange: Order book: In the order
book approach all orders (e.g. limit orders) are written to the chain and then
matched and carried out by a smart contract. Unfortunately this inherently
front-running by miners. AMM: An AMM is basically a liquidity holding smart
contract, allowing exchange between two different tokens. The smart contract
then facilitates exchange between tokens of type A and B, with an exchange
rate that ensure that the product of the amount of tokens in the contract, re-
mains constant. Unfortunately AMMs are highly susceptible to front-running by
miners, since orders and exchange rates will be known to miners before they get
carried out.

While these approaches solve some issues related to decentralized exchange none
of these are unfortunately a silver bullet for users who desire both ease of use,
decentralization and front-running resistance [6].
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P2DEX. P2DEX [9] is a different system for achieving cross chain exchange,
although it can be considered a special case of the order book approach. It uses
a set of outsourced MPC servers [28,37] who threshold control burner addresses,
where the clients transfer the tokens they wish to exchange, to compute order
matching based on private input of clients. The servers then use the threshold
keys for these addresses to send money out of these burner addresses to the
intended recipients.

Adding cross-chain functionality. Like our work, P2DEX also use a set of
MPC servers to compute on client’s private input. But unlike P2DEX we don’t
use burner addresses, but instead a holding smart contract Lock, administered
by a single distributed signing key. But we note that the P2DEX approach will
also work with the smart contract based approach. Thus by simply having Lock
smart contracts instantiated on multiple blockchains, with different administra-
tion keys, these can form the same purpose as the burner addresses in P2DEX.
Concretely this can be realized by simply having each client provide a confi-
dential token commitment on each chain they expect to receive some tokens.
Note that such a commitment can be of 0 tokens. The MPC servers will then
validate all the confidential tokens given to Lock on each of the different chains,
through the verify input phase. Then one, unified privacy preserving smart con-
tract ConfContract will be executed, which will yield new commitments for each
of the relevant clients on each chain. The clients can then use withdraw in Lock on
each of the different chains to finish the computation and get their confidential
tokens on the relevant chains.

This approach could of course also be combined with the mixer idea above,
allowing for cross-chain mixers with selective levels of privacy depending on the
amounts mixed by a given user.

Doing cross-chain exchange on hidden tokens also has the advantage of allow-
ing parties, with very large amounts of tokens, to carry out an exchange in a slow
and continues manner, thus preventing sudden exchange fluctuations. In fact, our
system could enforce an upper bound on the amount of tokens to exchange in
one round, and automatically split up large orders so they get completed over
multiple rounds, instead of just one.

Security. The overall security of this approach follows from P2DEX, although
we will also argue that intuitively there is nothing non-trivial to simulation if we
adjust our ideal functionalities and protocol to follow this approach. Basically
where there is formal cryptography to be proven is in the integration between
the different ideal functionalities, in particular when ensuring consistency be-
tween the input to outsourced MPC and the commitments transferred to the
holding contract. However, using our scheme across multiple chains make no dif-
ference in this. The only modelling difference is simply that the ideal blockchain
functionalities can no be considered to “wrap” different instances of the same
functionality (thus reflecting multiple chains). Such a wrap inherently does not
affect secure insofar that it does not contain any logical loopholes.
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F.4 Future work

While we construct and prove UC-secure a scheme for decentralized privacy
preserving smart contracts, we believe there are multiple paths for future work
to explore. An immediate interesting path is to implement and benchmark the
system for some of the applications we have discussed. For example, a better
formalization of the cross-chain approach, along with an investigation of MPC
friendly algorithms for fair matching of exchange orders could allow the realiza-
tion of a highly secure and private decentralized exchange. For such applications
it also becomes important to investigate, the logic of how to use the collateral to
punish malicious parties in case they cheat. In particular such that no rational
party will end up with a skewed or perverse incentives. In relation to this, it
would be interesting to investigate how to integrate Pedersen commitments with
MPC in an efficient way, without requiring the MPC computation domain to be
the same as the Pedersen message space. This could have a great affect on the
efficiency if the MPC computation domain is significantly smaller than 256 bit.
Currently we require the sharing the opening information of commitments to
happen in a P2P manner, off-chain, when transferring hidden tokens. It would
be interesting to investigate how to implement hidden tokens in a way that does
not require client-to-client communication when doing transfers, while working
with the rest our protocol. In relation to this, other ways the overall usability
of our system could also be improved is constructing a protocol leveraging other
existing results to allow stateless clients. For example through some notion of
password authenticated distributed secret sharing [18]. In continuation of this,
investigating how to prevent the use of user-supplied masks for each round of
execution private smart contract computation, would also give a great impact
on the usability of our solution.
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Protocol ΠCLedger

ΠCLedger is run by clients C and committee Q. The protocol runs in the presence of
FLedger, FRNIZK, FSig instances. Initially, only accept inputs GenAcct and InitLedger.

GenAcct: Upon (GenAcct, sid), obtain fresh vk from FSig. Set key store to K ←
K ∪ {vk}, and return (NewAcct, sid, vk).

InitLedger: Upon (InitLedger, sid,LInit, vk), client C parses LInit as a map from a
set of signature keys to token balances G 7→ (T 7→ Z) and asserts vk ∈ K.
1. C initializes FLedger with Q and signs m = (Init, sid,LInit) via FSig with key vk.

Send (Post, sid,m, vk, σvk(m)) to FLedger.
2. C compiles XCLedger to initial contract state and circuit (γ, T ). Sign m =

(Deploy, sid, γ, T, vk) via FSig with vk, and send (Post, sid,m, vk, σvk(m)) to
FLedger. Ignore further InitLedger inputs and accept all other inputs.

Transfer: Upon (Transfer, v̄, vkrcv, vk), obtain L from GetLedger procedure. As-
sert vk ∈ K and L[vk] ≥ v̄. Sign m = (Transfer, sid, v̄, vkrcv) via FSig with key vk
and send (Post, sid,m, vk, σvk(m)) to FLedger.

Mint: On (Mint, sid, v̄, vk), client C,
1. Assert vk ∈ K, obtain state L, Γ from FLedger and assert L[vk] ≥ v.
2. Sample r←$F, compute c ← com(v̄, r) and obtain string π from FRNIZK where
R(c, v̄; r) = {c = com(v̄, r)}.

3. Sign (Call, sid, (cn, f(Mint), (c, π), v̄)) via FSig with vk and post to FLedger.
4. Set wallet W[vk]←W[vk] ∪ {〈id = c, (v̄, r)〉} and return (Minted, sid, id).

ConfTransfer: On (ConfTrfr, sid, Crcv, vkrcv, {idi, v̄′i}i∈{1,2}), client C:
1. Assert ∃vksrc ∈ dom(W) : (idi, (v̄i, ri)) ∈ W[vksrc], v̄1 + v̄2 = v̄′1 + v̄′2, v̄′i ≤ v̄max.
2. For i ∈ {1, 2}, sample r′i ←$F such that

∑
i∈{1,2} r

′
i =

∑
i∈{1,2} ri and compute

c′i = com(v̄′i, r
′
i) and πi via FRNIZK that proves R(c′i; v̄

′
i, r
′
i) = {v̄′i ≤ v̄max}

3. Sign and post (Call, sid, (cn, f(ConfTransfer), x, 0t), vksrc) to FLedger, where
x = ({ci, c′i, πi}i∈{1,2}, vkrcv).

4. Send (ConfTrfr, sid, v̄′1, r
′
1, vksrc) to Crcv, which stores it.

5. Set W[vksrc]←W[vksrc] ∪ (id′2 = c′2, (v̄
′
2, r
′
2)) and return (Change, sid, id′2).

ConfReceive: On (ConfReceive, sid) client C:
1. For vk ∈ dom(W), retrieve {(v̄i, ri, vki)}i∈[l] received from clients since the last

ConfReceive input and LConf from FLedger.
2. For (v̄, r, vk) ∈ {(v̄, r, vki)}i∈[l], compute c = com(v̄, r) and assert c ∈ LConf[vk].

- If satisfied, add (id = c, (v̄, r)) to W[vk].
3. Returns (Received, (vk1, 〈id1, v̄1〉), ..., (vkl, 〈id′l, v̄′l〉)) for l′ received transfers.

Redeem: On (ConfRdm, sid, id) client C,
1. If ∃(vk, v̄, r) : (id, (v̄, r)) ∈ W[vk], where id = com(v̄, r).
2. Compute π via FRNIZK which proves R(c, v̄; r) = {c = com(v̄, r)}.
3. Sign and post (Call, sid, (cn, f(Redeem), (v̄, c, π), 0̄), vk) to FLedger.

GetLedger: Upon (GetLedger, sid), client C obtains (L, Γ ) and contract id
cn from FLedger, reads (γ,w, T ) ← Γ [cn], and parses γ as (LConf, m̄). C outputs
(Ledger, sid,L,LConf).

ExtCall: Upon (ExtCall, sid,F,m) received from FLedger, party Q ∈ Q forwards
m to hybrid instance F and waits. Upon response ret from F, party Q forwards
(CallBack, sid, ret) to FLedger.

Fig. 10: Protocol ΠCLedger UC-securely realizing FCLedger
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Program XCLedger

On input (ν | γ | w̄ | cn, fn, x, v̄ | vk), parses function selector fn and execute function
routine with input string x ∈ {0, 1}∗, parsed according to function descriptions below.
Further, parse contract state γ as LConf, where LConf : Gvrk → {Gcom, ...}. XCLedger is
parameterized with committee Q.

Mint: parse x as (c, π) where c ∈ G and π ∈ {0, 1}∗.
1. Send call to Q with msg for FRNIZK to verify that π proves R(v̄, c; r) = {c = gv̄hr}.
2. Set LConf[vk]← LConf[vk] ∪ {c}, w̄← w̄ + v̄ and L[vk]← L[vk]− v̄.
3. Output updated (L, γ′ = LConf, w̄).

ConfTransfer: parse x as (c1, c2, c
′
1, c
′
2, π1, π2, vkrcv) where ci, c

′
i ∈ G, πi ∈ {0, 1}∗

for i ∈ {1, 2} and vkrcv ∈ G.
1. Assert {c1, c2} ∈ LConf[vk] and that c1 · c2 = c′1 · c′2 holds.
2. Send call to Q with msg for FRNIZK to verify ∀i ∈ {1, 2}: πi proves R(c′i; v̄

′
i, r
′
i) =

{v̄′i ≤ v̄max ∧ c′i = gv̄′
ihr

′
i}.

3. Set LConf[vk]← LConf[vk]\{c1, c2} ∪ {c′2} and LConf[vkrcv]← LConf[vkrcv] ∪ {c′1}.
4. Output updated (L, γ′ = LConf, w̄).

Redeem: parse x as (v̄, c, π), c ∈ G and π ∈ {0, 1}∗.
1. Assert c ∈ LConf[vk] and w̄ ≥ v̄.
2. Send call to Q with msg for FRNIZK to verify π proves R(v̄, c; r) = {c = gv̄hr}.
3. Set LConf[vk]← LConf[vk]\{c}, w̄← w̄ − v̄.
4. Output updated (L, γ′ = LConf, w̄).

Fig. 11: The smart contract code XCLedger for confidential tokens.
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I/II: Protocol ΠCContract, extends ΠCLedger

All clients and servers are registered with FClock.

Init: On (Init, sid, g) server P ∈ P,
1. Runs GenAcct in ΠCLedger to generate signature verification key vk, sends to P.
2. Runs InitLedger in ΠCLedger to initialize FLedger; here, P ∈ P obtains fresh vk.
3. Jointly samples key vkTSig via FTSig with P.
4. Deploys XLock[XCLedger] and XCollateral to FLedger.

a. Obtains contract instance id’s cnLock = cnCLedger and cnColl from FLedger.
b. Signs and sends (Call, sid, (cnLock, f(Init), (vkTSig), 0|T|), vk) to FLedger.
c. Sends (Call, sid, (cnColl, f(Deposit), (vkTSig), v̄Coll), vk) to FLedger.

5. Initializes FIdent, asserts circuit depth of depth(g) ≤ dT and stores it.
6. Updates FClock.

Enroll: Upon input (Enroll, sid, x, id, vk), client C ∈ C:
1. Asserts ∃(id, (v̄, r̄)) ∈ W[vk] and cnLock, cnColl are in enroll/coll.
2. Generate output masks:

a. Samples and stores ŷ, ŵ = (ŵ1, ..., ŵ|T|), r̂←$F.
b. Computes and stores ĉ← com(ŵ, ŝ).

3. Sends client input and output masks (x, (v̄, r̄), (ŵ, ŝ)) to FIdent.
4. Sends (Call, sid, (cnLock, f(Enroll), (c = com(v̄, r̄), ĉ), 0̄), vk) to FLedger.
5. Removes (id, (v̄, r̄)) from W[vk] and updates FClock.

Verify input: Upon input (Execute, sid), if FClock has progressed since last activa-
tion and cnLock, cnColl are in enrolled and coll respectively, server Pi ∈ P performs:
1. Pi obtains client input coins and masks {(c1, ĉ1), ..., (cm, ĉm)} from FLedger.
2. For verification of client inputs {(v̄j , r̄j , cj,)}j∈[m], Pi performs:

a. Servers interact with FIdent and call following interfaces:
- Evaluate: [ ā ], [ b̄ ], [ γ ]← rand()a

- Open γ ← [ γ ].

- Get Shares: ā(i) = (ā
(i)
1 , ..., ā

(i)

|T|), b̄
(i), {v̄(i)

j = (v̄
(i)
j,1, ..., v̄

(i)

j,|T|), r̄
(i)
j }j∈[m]

a. Local computation of the following and sends resulting shares to all P:
- c̄

(i)
a,b ← com(ā(i), b̄(i)), v̄

(i)′
t ← ā

(i)
t +

∑
j∈[m] v̄

(i)
j,t (γ

(i))j for t ∈ [|T|]
- r̄(i)′ ← b̄(i) +

∑
j∈[m] r̄

(i)
j (γ(i))j

b. Each Pi reconstructs (v̄′ = v̄′1, ..., v̄
′
|T|, r̄

′), from shares and

- Asserts:
∏
i∈[n] c̄

(i)
a,b ·

∏
j∈[m](cj,in)γ

j

= gv̄′
hr̄

′

3. Servers repeats for the batch verification of client masks {(ŵj , ŝj , ĉj)}j∈[m].
4. Server Pi updates FClock.

a e.g. XOR circuit evaluated on random inputs.

Fig. 12: Part 1 - Protocol ΠCContract UC-securely realizing FCContract.
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II/II: Protocol ΠCContract, extends ΠCLedger

Evaluate: After verify input and if FClock has progressed, cnLock is in enrolled, each
server Pi ∈ P performs:
1. It interacts with following interfaces of FIdent.

a. Runs Evaluate on circuit g with secret client inputs {(xj , v̄j)}j∈[m].
b. Runs Evaluate to apply masks over output gate values of circuit g:

- For each j ∈ [m]: ([ y′j ], [ w̄′j ])← ([ yj ], [ w̄j ]) + ([ ŷj ], [ ŵj ])
c. Runs Share for obtain shares of {([ y′j ], [ w̄′j ])}j∈[m] from FIdent.

2. Jointly signs σvkTSig (eval) with P via FTSig: if FTSig aborts, runs abort.
3. Sends (Call, sid, (cnLock, f(Lock), (σvkTSig (eval)), 0̄), vk) to FLedger, updates FClock.

Open: Upon running evaluate and FClock has progressed, each server Pi ∈ P:
1. Runs Optimistic Reveal in FIdent for masked outputs mout = {(y′j , w̄′j)}j∈[m].
2. Jointly signs sig = σvkTSig (mout) via FTSig: if abort is returned, run abort.
3. Sends (Call, sid, (cnLock, f(Settle), (mout, sig), 0̄), vk) to FLedger, updates FClock.

Withdraw: Upon (Withdraw, sid), each client Cj ∈ C performs:
1. Retrieves all masked outputs {(y′j,1, w̄′j,1), ..., (y′j,l, w̄

′
j,l)} added to cnLock on FLedger

since last withdraw activation.
2. For each retrieved masked output, reads corresponding mask values (ŷj , ŵj , ŝj)

stored locally and computes yj = y′j − ŷj , w̄j ← (w̄′j − ŵj).
- Samples id′j and set W[vkj ]←W[vkj ] ∪ {(id′j , (w̄j ,−ŝj))}.

3. Returns (yj,1, 〈id′j,1, w̄j,1〉), ..., (yj,l, 〈id′j,l, w̄j,l〉).

Abort: Upon receiving (Abort, sid), each Pi ∈ P ticks FClock:
1. If cnLock is in state enroll or enrolled,

signs and sends (Call, sid, (cnLock, f(Abort), {0, 0̄}j∈[m]), 0̄), vk) to FLedger.
2. Else if cnLock is in state lock, run Reveal and Allow Verify with FIdent.

- If FIdent returns cheating servers J
signs and sends (Call, sid, (cnLock, f(Abort), {0, 0̄}j∈[m]), 0̄), vk) to FLedger.

- Else server Pi obtains {y(i)
j , w̄

(i)
j }j∈[m] from Reveal, signs and

sends (Call, sid, (cnLock, f(Abort), {y(i)
j , w̄

(i)
j }j∈[m]), 0̄), vk) to FLedger

3. Updates FClock and terminates.

Fig. 13: Part 2 - Protocol ΠCContract UC-securely realizing FCContract.
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Program XLock, extends XCLedger

On input (ν | γ | w̄ | cn, fn, x, v̄, vk), XLock parses γ as (LConf,LLock,M,J , st), where
LLock is a ledger of locked coins, M is a map of account verification keys to coin
commitment masks, J is set of cheating servers and st ∈ {enroll, enrolled, lock}
captures the phase the confidential coin lock is currently in.

Init lock: parse x as vkTSig, set state to enroll.

Enroll: parse x as (c, ĉ) ∈ Gcom ×Gcom.
1. Assert state is enroll and c ∈ LConf[vk]. Set LLock[vk]← LLock[vk]∪{c}, LConf[vk]←
LConf[vk]\ {c} and M[vk]← ĉ.

2. If round ν has progressed since last state transition to enroll,
set st to enrolled. Return updated (L, γ′ = (LConf,LLock,M, J , st), w̄).

Evaluated: parse x as σvkTSig (eval) ∈ {0, 1}∗.
1. Assert state st is enrolled, verify σvkTSig (eval) via FTSig.
2. If no abort is returned and two FClock rounds (observed via ν) have progressed

since last state transition to enrolled: set st to lock.
3. Return updated (L, γ′ = (LConf,LLock,M, J , st), w̄).

Settle: parse x as σvkLock ({yj , v̄j}j∈[m]).
1. Assert state is lock, verify σvkLock ({yj , v̄j}j∈[m]) via FTSig.
2. If no abort is returned and FClock round has progressed, run payout({v̄j}j∈[m]).

Abort: parse x as {y(i)
j , v̄

(i)
j }j∈[m].

1. If state is enroll or enrolled, run reimburse.
2. Else if state is lock,

- Send (Test-Reveal, sid) and (Verify, sid, {y(i)
j , v̄

(i)
j }j∈[m]) to FIdent.

- If no abort is returned and FClock round has progressed, reconstruct {v̄j}j∈[m]

when all shares received from P and run payout({v̄j}j∈[m]).
- Else if abort is returned from FIdent or shares are missing, record cheating servers
J and run reimburse(J ).

payout({v̄j}j∈[m]): for each Cj ’s output v̄j ∈ {v̄j}j∈[m],
1. LConf[vkj ] ← LConf[vkj ] ∪ {cj · ĉ−1

j }, where cj = gv̄jh0, ĉj = M[vkj ]. LLock ← ∅,
M← ∅. Return updated (L, γ′ = (LConf,LLock,M, J , enroll), w̄).

reimburse(J ): for vk ∈ dom(LLock),
1. Set LConf[vk]← LConf[vk] ∪ LLock[vk].
2. Set LLock ← ∅,M← ∅. Return updated (L, γ′ = (LConf,LLock,M, J , enroll), w̄).

Fig. 14: The smart contract code XLock for extended confidential token function-
ality.
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Program XCollateral

Parameterized by signature verification keys {vk1, ..., vkn} associated with servers
P = {P1, ..., Pn}, contract identifier cnLock and collateral threshold v̄coll.

Deposit collateral:
1. Assert local state is deposit, cnLock state is enroll, and v̄in ≥ v̄coll.
2. If collateral received by accounts associated with vk for i ∈ [n], set state to coll.

Round activation: If FClock round has progressed since update to coll.
1. If cnLock is in deposit, return collateral and set state to deposit.
2. Else if cnLock is in abort with cheating J ⊆ P, distribute J ’s collateral to C′.

Return collateral of honest servers. Set state to deposit.

Fig. 15: The smart contract code XCollateral.


