
Limits on revocable proof systems,
with implications for stateless blockchains

Miranda Christ1,3 and Joseph Bonneau2,3

1 Columbia University
2 New York University
3 a16z Crypto Research

Abstract. Motivated by the goal of building a cryptocurrency with suc-
cinct global state, we introduce the abstract notion of a revocable proof
system. We prove an information-theoretic result on the relation be-
tween global state size and the required number of local proof updates
as statements are revoked (e.g., coins are spent). We apply our result to
conclude that there is no useful trade-off point when building a stateless
cryptocurrency: the system must either have a linear-sized global state
(in the number of accounts in the system) or require a near-linear rate
of local proof updates. The notion of a revocable proof system is quite
general and also provides new lower bounds for set commitments, vector
commitments and authenticated dictionaries.

1 Introduction

Modern cryptocurrencies prevent double-spending attacks using a public, append-
only log called a blockchain. Classically, a blockchain records all transactions,
and validating a new transaction requires checking that it doesn’t conflict with
any prior transaction. This approach was first successfully deployed by Bit-
coin [22] though it was proposed earlier [14].

A challenge of the blockchain paradigm is that each validator traditionally
must store the entire state of the system. In Bitcoin, this consists of a set of
unspent transaction outputs (UTXOs), which has consistently grown and now
contains 80 million elements, requiring several GB to store. Ethereum’s state is
even larger [31], requiring roughly 35 GB to represent 200 million accounts.

The requirement that validators store this large (and growing) state raises
concerns about centralization if the state grows so large that only well-funded
organizations can afford to store it. As a result, most blockchain systems impose
strict limits on state growth, which in turn limit transaction throughput. Fa-
mously, Bitcoin originally imposed a maximum size of 1MB per block, limiting
throughput to about three transactions per second.

The tension between throughput and state growth leads to a natural question:
can we achieve high throughput with a small (perhaps even constant-sized) global
state? This led to the proposal of stateless blockchain designs [27], although
this term is a misnomer: they typically assume validators store a store a small
commitment to the global state of the system (e.g., a Merkle root committing



to the set of unspent coins). Users wishing to make a transaction must publish a
witness that their transaction is valid given the current state commitment (e.g.,
a Merkle proof that a coin is included in the valid set). Validators can then
accept transactions without knowing the full state of the system. Since Todd’s
original proposal using Merkle trees, several other designs have been proposed
using Merkle-tree-based accumulators [6,16], RSA accumulators [4], and vector
commitments [28,26,30,12,18]. Stateless blockchains are distinct from succinct
blockchains [20,1,11] such as the Mina protocol [5]. Succinct blockchains use
verifiable computation to to achieve O(1) storage and verification costs for light
clients, but still require validators to store the entire system state in order to
process new transactions and build (and prove correct) new blocks.

Unfortunately, all known stateless blockchain designs introduce a new prob-
lem: users’ witnesses can become invalid as other (unrelated) transactions update
the global state, requiring users to monitor the network and periodically refresh
their witnesses. This is a departure from the traditional blockchain model, in
which users can stay offline for long periods of time and then successfully create
and broadcast a transaction. This is not simply a matter of convenience; there
are important security benefits of supporting offline participation, as private keys
can be kept in air-gapped machines such as hardware wallets.

In this work we show that, regrettably, the trade-off between a large global
state and requiring frequent witness changes is fundamental. More specifically,
in Theorem 1 we show a lower bound on the global state size as a function of
the number of revoked statements and the desired maximum number of witness
changes. In Corollary 1, we show that there is no trade-off which does not require
either an (asymptotically) linear-sized global state or an (asymptotically) near-
linear number of witness updates as a constant fraction of coins are spent.

Model. To analyze the efficiency of stateless blockchains and similar authenti-
cated data structures, we introduce a new cryptographic notion: a revocable proof
system (RPS, Section 2). An RPS is a simple abstraction capturing a class of
schemes that involve a global state V encapsulating a set S of valid statements.
Correctness ensures that each valid statement si ∈ S has a corresponding proof
πi which can be efficiently verified given si, the public parameters, and the global
state. A subset T ⊆ S of the initial set of valid statements may later be revoked,
yielding an updated global state V ′. Security requires that these revoked state-
ments’ proofs no longer verify. This functionality is quite natural and captures
a wide range of useful cryptographic notions, including accumulators and vector
commitments. We discuss these connections in Section 4.

Contributions. Using our revocable proof system definition we prove a trade-off
between the size of the global state and the frequency with which proofs must
be updated (Theorem 1). We do so using a compression argument: if the global
state is small and with constant probability there are few (≤ k) proof updates, an
adversary can use the global state and a small amount of additional information
to encode the revoked set. We apply Shannon’s Coding Theorem to show a lower
bound on the size of the global state given the number of proof updates k.

2



As a corollary, we observe that there is no useful asymptotic trade-off between
the size of the global state and the number of proof changes: either the state size
is linear, or a (nearly) linear number of proofs must change (Section 3.1). As a
second corollary, we show that a useful notion of persistence (proofs of certain
statements never change) requires linear storage for these persistent statements.
In Section 4, we show that accumulators, vector commitments, and authenticated
dictionaries fit the framework of a revocable proof system and thus our lower
bound applies to them, giving results of independent interest.

Implications. Finally, we discuss the implications of our results on stateless
blockchain proposals (Section 5). We plot the minimum number of required wit-
ness changes per day for blockchains with practical transaction rates and global
state sizes. For a blockchain with a transaction rate on the scale of Visa, the
number of witness changes is infeasibly large for any meaningfully compressed
global state. We discuss three ideas for mitigating the witness update issue and
analyze them in light of our impossibility result. The first idea is a versioning sys-
tem, which stores explicitly all transactions occurring during the current epoch
and consequently requires no witness updates within this epoch. The second is
a scheme where users lock up their coins for a period of time in exchange for
a guarantee that their witnesses will remain unchanged during that time. The
third and most promising is the introduction of new state-storing third parties,
which are neither users nor validators, called proof-serving nodes.

2 Model

Notation. We use λ to denote the security parameter. We use lg to denote a
logarithm with the base 2. Right → and left ← arrows denote the output of a
(possibly randomized) algorithm.

A revocable proof system (RPS) maintains a global state V , a valid set S,
and a set of proofs πi for each element si ∈ S which we’ll also call a statement.
The global state commits to the valid set, such that proofs of elements si in S
can be verified. More formally, a revocable proof system is a tuple of algorithms
(Setup,ComputeState,Revoke,Verify) where:

Setup(1λ)→ pp is a randomized algorithm that takes as input 1λ, where λ is
the security parameter, and outputs public parameters pp.

ComputeState(pp, S)→ V, (π1, π2, . . . , πn) is a deterministic algorithm that takes
as input the public parameters pp and a valid set S of size n. It outputs the
corresponding global state V and a list of proofs (π1, π2, . . . , πn) where πi is
the proof for si ∈ S.

Revoke(pp, S, T, V, (π1, π2, . . . , πn))→ V ′, (π′1, π
′
2, . . . , π

′
n) is a deterministic al-

gorithm that takes as input the public parameters pp, the initial valid set
S, a revoked set T ⊆ S, an initial global state V , and a list of proofs for
elements in S. It outputs an updated global state V ′ and updated proofs.4

4 Although for ease of notation the output includes n proofs, security dictates that
proofs for elements in T should not verify.

3



Verify(pp, V, si, πi)→ {true, false} is a deterministic algorithm that takes as in-
put the public parameters pp, a global state V , a statement si, and a proof
πi. It outputs true or false.

A revocable proof system must be correct and secure. By correct, we mean
that genuine proofs for valid elements should verify against the corresponding
global state. By secure, we mean that it should be difficult to find a proof for
a revoked element; that is, it should be computationally hard for an adversary
to produce a revoked set such that a proof for a revoked element still verifies
against the updated global state. More formally, correctness and security are
defined as follows:

Definition 1 (Correctness5). A revocable proof system is correct if for every
set S, every set T ⊆ S, and every si ∈ S \ T ,

Pr


pp← Setup(1λ)

V, (π1, π2, ..., πn)← ComputeState(pp, S)
V ′, (π′1, π

′
2, ..., π′n)← Revoke(pp, S, T, V, (π1, π2, ..., πn))

Verify(pp, V, si, πi) = true
Verify(pp, V ′, si, π

′
i) = true

 = 1

Definition 2 (Security). A revocable proof system is secure if for every p.p.t.
adversary A,

Pr


pp ← Setup(1λ)

S, T, s∗, π∗ ← A(1λ, pp)
V, (π1, π2, ..., πn) ← ComputeState(pp, S)
V ′, (π′1, π

′
2, ..., π′n) ← Revoke(pp, S, T, V, (π1, π2, ..., πn))

s∗ ∈ T
Verify(pp, V ′, s∗, π∗) = true

 ≤ negl(λ)

3 Main result

Our main result is an inequality describing the relationship between the size of
the global state and the number of proofs of valid statements which must be
updated. We first introduce the notion of a k-good revoked set; that is, a set of
statements such that when these statements are revoked, none of their proofs
still verify, and at most k still-valid statements’ proofs must be changed.

5 While correctness with probability 1 is standard for the schemes we consider, our
main result (Theorem 1) still holds for a relaxed notion of correctness which holds
with overwhelming probability. In fact, it does not rely on correctness at all and
rather on the prevalence of a notion of a k-good revoked set. A revocable proof
system that is secure, correct with overwhelming probability, and has few witness
changes should have many k-good revoked sets.

4



Definition 3 (k-good revoked set). We say a revoked set T is k-good given
a revocable proof system RPS, an initial valid set S, size parameter n = |S|,
and public parameters pp if, for V, (π1, π2, . . . , πn) ← ComputeState(pp, S) and
V ′, (π′1, π

′
2, . . . , π

′
n)← Revoke(pp, V, T ) if:

1. For every revoked statement si ∈ T , Verify(pp, V ′, si, πi) = false
2. There are at most k non-revoked statements sj ∈ (S \ T ) such that

Verify(pp, V ′, sj , πj) = false

Condition (1), that the original proof of a revoked statement no longer ver-
ifies, is a consequence of the security requirement that should hold for most
revoked sets. Condition (2) is that few (≤ k) proofs of non-revoked statements
no longer verify (i.e., need to be updated). Suppose that we want to have a secure
revocable proof system such that most of the time, at most k non-revoked state-
ments change when a set of size m is revoked. This is equivalent to having many
k-good revoked sets of size m. By security (regardless of |V |), an overwhelming
fraction of sets of size m must satisfy condition (1); otherwise an adversary could
choose a set of size m at random, revoke it, and succeed in finding a proof for
a revoked element. Condition (2) is exactly the other property we want: that at
most k non-revoked statements change when our set is revoked. Therefore, our
desired revocable proof system must have many k-good revoked sets of size m.

We now show that if any public parameters yield many k-good revoked sets,
the size of the global state must be large. In other words, if the size of the global
state is small, many proofs of non-revoked statements must change when an
average set is revoked.

Theorem 1. Let RPS = (Setup,ComputeState,Revoke,Verify) be a revocable
proof system satisfying correctness, and let pp be any public parameters occur-
ring with nonzero probability over Setup(1λ). Let S be a set of size n, and let
X ∗k denote the set of subsets T ⊆ S that are k-good given RPS, S, and public
parameters pp. Then |V |, the size of the global state in bits, satisfies

|V | ≥ lg |X ∗k | − ⌈k lg n⌉

Proof. We show that if |V | is any smaller, there exists an efficient encoding
of X ∗k using fewer than lg |X ∗k | bits, contradicting Shannon’s Coding Theorem
[25]. Note that X ∗k can be computed by trying every revoked set T ⊆ S and
determining whether it fits the conditions of a k-good revoked set. While this
algorithm is not efficient, it does not need to be as the contradiction we derive is
compression beyond information theoretic limits, which poses no computational
bounds on the communicating parties.

Consider two parties A and B interacting with a challenger in a game given as
input S and pp. The goal is forA to succinctly encode a uniformly chosen revoked
set T ⊆ S for B to decode. The challenger computes the initial global state
and proofs V0, (π1, π2, . . . , πn) ← ComputeState(pp, S). The challenger passes
V0, (π1, π2, . . . , πn) to both A and B. A chooses T uniformly at random from X ∗k
and computes the updated global state V ← Revoke(pp, V0, T ). Then, for each

5



si ∈ (S\T ),A checks whether its proof verifies; i.e., whether Verify(pp, V, si, πi) =
true. If not, A adds si to a list L of still-valid statements with changed proofs.
A sends V and L to B.

We now show that given V and L, B can decode T exactly. Let B’s decoding
be the set T ′ consisting of all statements si such that Verify(pp, V, si, πi) = false
and si /∈ L. First, any statement si ∈ T must be in T ′, since by definition of a
k-good revoked set6, no proofs for revoked statements verify. Therefore, T ⊆ T ′.
Next, B’s decoding algorithm ensures any statement si ∈ T ′ is not in L, and
Verify(pp, V, si, πi) = false. All elements sj that were not revoked (i.e., not in T )
and whose proofs no longer verify (Verify(pp, V, si, πi) = false) are included in
L. Since si is not in L, it must in fact have been revoked, so si ∈ T . Therefore,
T ′ ⊆ T , which implies that T ′ = T .

Finally, we observe that A can encode L by listing a (lg n)-bit representation
of each of its elements. Since |L| ≤ k by definition of X ∗k , this encoding takes at
most ⌈k lg n⌉ bits, andA sends |V |+⌈k lg n⌉ bits in total after choosing T . Since T
was chosen uniformly from X ∗k , and the entropy of the uniform distribution over
X ∗k is lg |X ∗k |, we have by Shannon’s Coding Theorem that |V |+⌈k lg n⌉ ≥ lg |X ∗k |.

⊓⊔

3.1 No useful trade-offs for sublinear state size

We show that under certain regimes (when |X ∗k | includes at least a constant
fraction of subsets of size m for lg n ≤ m ≤ n

2 ), there is no useful trade-off
between the global state size and the frequency of proof changes when m elements
are deleted. That is, the global state size is either linear in the size of the stored
set, or Ω

(
m
lgn

)
proofs must be updated.

Corollary 1 (No useful trade-offs). Let n be the size of the initial valid set
S and m ≤ n

2 be the number of deleted elements.7 If |X ∗k | includes at least
a constant fraction of subsets T ⊆ S of size m, and the global state size is
|V | = o(lg

(
n
m

)
), then k = Ω

(
m
lgn

)
.

Proof. This holds by a straightforward application of Theorem 1. First, observe
that the number of possible T ⊆ S of size m is

(
n
m

)
≥ nm

mm ≥ 2m. X ∗k includes at
least a constant fraction of these subsets T of size m, so lg |X ∗k | = Ω(lg

(
n
m

)
) =

Ω(m). In order for the inequality from Theorem 1 to hold, we must have k lg n ≥
Ω(lg

(
n
m

)
)− o(lg

(
n
m

)
), or k =

Ω(lg (n
m))

lgn = Ω
(

m
lgn

)
.

6 It is tempting to instead cite security of a revocable proof system here, but security
guarantees only that for most revoked sets T , proofs of revoked statements do not
verify. Our definition of k-good gives us exactly what we need.

7 If more than n
2

elements are deleted in sequence, as in stateless blockchains, we can
set m = n

2
since there must be an intermediate point where n

2
elements were deleted,

and this bound still applies.

6



This bound on k holds for any global state size |V | that is sublinear in lg
(
n
m

)
.

Once the global state size becomes Ω(lg
(
n
m

)
), we can (asymptotically) store

the full list of deleted elements and require no witness updates. One especially
interesting regime for this bound is when m = Θ(n) and |V | = o(n). Then
Corollary 1 implies that k = Ω

(
n

lgn

)
. In other words, if we want to avoid a

near-constant fraction of proof updates, we need a linear global state size, at
which point we can (asymptotically) store the full state naively and require no
witness updates. This suggests that there is no asymptotically useful trade-off
between global state size and number of proof changes in this regime; at least
one of the two must be (nearly) linear.

3.2 Persistence requires linear storage

We now show that another desirable property, which we call persistence, is also
not possible without linear global state. Suppose that we want proofs of certain
statements to always verify as long as those statements remain true. This guar-
antee would be very useful in cryptocurrencies, allowing a user to stay offline
until she is ready to make a transaction, without fear of her proof becoming
stale. We call this notion persistence and formalize it below.

Definition 4 (Persistence). A statement si ∈ S is persistent given initial
valid set S of size n and public parameters pp if for all T ⊆ S such that si /∈ T ,

– V, (π1, π2, . . . , πn)← ComputeState(pp, S)
– V ′, (π′1, π

′
2, . . . , π

′
n)← Revoke(pp, S, T, V, (π1, π2, . . . , πn))

– Verify(pp, V ′, si, πi) = true

A corollary of Theorem 1 shows that there can be very few persistent state-
ments:

Corollary 2 (Persistence requires linear storage). Let RPS be a secure
and correct revocable proof system such that there exists an initial set S and a
set S∗ ⊆ S such that

Pr
pp←Setup(1λ)

[every s ∈ S∗ is persistent] >
1

2

Then the the global state of RPS has size at least |S∗| − 1.

Proof. Let S be any initial set and S∗ be any subset of S. We wish to show that
with high probability, X ∗0 is large, where X ∗0 is the family of revoked sets that
require no witness changes and for which proofs of revoked statements do not
verify. We first argue that by security, few revoked sets T ⊆ S∗ yield proofs of
revoked statements that still verify. Then it follows that X ∗0 contains all other
revoked subsets of S∗, since by definition of persistence they require no witness
changes.

7



Suppose for the sake of contradiction that for all parameters pp← Setup(1λ)
that occur with nonzero probability and for which every s ∈ S∗ is persis-
tent, more than half of the revoked sets T ⊆ S∗ yield a global state such
that the proof of a revoked statement verifies. Then the following adversary A
forges a proof with non-negligible probability, breaking security. Let A compute
pp ← Setup(1λ) and V, (π1, π2, . . . , πn) ← ComputeState(pp, S). A then chooses
T ⊆ S∗ uniformly at random, computes V ′, (π′1, π

′
2, . . . , π

′
n)← Revoke(pp, V, T ),

and checks whether Verify(pp, V ′, si, πi) for each si ∈ T . If A finds such an si, it
outputs S, T, si, πi. Independently, A chooses pp such that all of S∗ is persistent
with probability at least 1

2 and T such that the proof of a revoked statement
verifies with probability at least 1

2 . Thus, A is efficient and succeeds with prob-
ability 1

4 , contradicting security. Therefore, there must be some parameters pp
occurring with nonzero probability such that all of S∗ is persistent and at least
half of the revoked sets T ⊆ S∗ have no revoked statements whose original proofs
verify. The family of these sets is exactly X ∗0 , whose size is at least 1

2 · 2
|S∗|.

Thus, there exist public parameters pp occurring with nonzero probability
such that |X ∗0 | ≥ 1

2 · 2
|S∗|. Applying Theorem 1 for k = 0, we have that the size

of the global state is at least lg |X ∗k | = |S∗| − 1.

4 Implications for authenticated data structures

We show that cryptographic accumulators, vector commitments, and authen-
ticated dictionaries, are instances of revocable proof systems. Thus, our lower
bound from Theorem 1 applies. This result is of interest since these data struc-
tures are frequently used in distributed settings, in which users maintain proofs
of portions of the committed data that are verified against a global state. Our
bound dictates that these users must update their proofs frequently as the global
state changes.

4.1 Cryptographic accumulators

A cryptographic accumulator [3,9], also called a set commitment, commits to
an accumulated set X via a succinct digest A. Different accumulator schemes
support efficiently proving various properties about the accumulated set X, such
as membership or non-membership of elements. Some schemes may also allow
X to be modified and the corresponding proofs updated. A typical accumulator
supports additions, deletions, and membership proofs. That is, given a set X
there is a function computing a digest A and a membership proof (also called
a witness) wi for each xi ∈ X, corresponding to the ComputeState function of
a revocable proof system. When a new element x is added to X, a new global
state A′ can be computed using x and A. Furthermore, each membership proof
wi can be updated given x and A. When an element xi ∈ X is deleted, a new
global state A′ can be computed using xi, A, and the membership proof wi for
xi. The membership proofs of the other elements of X can be updated using the
same information. Some accumulator schemes also allow batch updates, where
multiple elements can be efficiently added and/or deleted at once [4].

8



Constructing a revocable proof system using an accumulator. We show how an
RPS can be constructed using an accumulator scheme Acc supporting addi-
tion, deletion, and membership proofs. Addition is only necessary for the initial
set S. The Setup function for our RPS calls the Setup function for Acc. The
ComputeState function for our RPS, given public parameters pp and a valid set
S, adds S to our accumulator given pp to obtain a digest A and a membership
witness wi for each si ∈ S. We let the proof πi for si be this membership witness
wi. We implement Revoke for our RPS by, given a set T ⊆ S, removing T from
the accumulated set and updating all witnesses according to the accumulator
scheme. The resulting global state is the resulting accumulator value A′, and the
resulting proofs π′i are the updated witnesses w′i. We let the Verify function for
our RPS be the same as the Verify function for the accumulator scheme.

Accumulator schemes have correctness and security definitions that are anal-
ogous to those of a revocable proof system; full definitions can be found in [8].
By correctness of the accumulator, membership witnesses for elements of the
accumulated set (equivalently, valid statements) verify. By security of the ac-
cumulator, it is hard for an adversary to find verifying membership witnesses
for elements not in the accumulated set (equivalently, revoked or invalid state-
ments). Thus, this construction is indeed a revocable proof system, and our lower
bound from Theorem 1 applies.

We note that we can also construct a revocable proof system using an ac-
cumulator that supports only addition and non-membership witnesses (but not
deletion). Given a finite data universe U and a set X ⊆ U , a delete/membership
accumulator storing X can be implemented using an add/non-membership ac-
cumulator storing U \X.

Camacho-Hevia result Our accumulator lower bound is reminiscent of a lower
bound proved by Camacho and Hevia [8]. They consider a dynamic accumulator
supporting addition, deletion, and membership proofs. Their model allows batch
updates: if w1, . . . , wn are witnesses for an initial accumulated set X, after dele-
tion of a set T the state-update function outputs a string UpdX,X\T that can
be used to update all witnesses to w′1, . . . , w

′
n to reflect the updated state. They

show that if there are |T | = m deletions, UpdX,X\T must have length Ω(m).
Baldimtsi et al. show an analogous result for a universal accumulator support-
ing addition, deletion, and non-membership proofs, using the same proof style
[2]. While these results are similar in spirit to ours, they do not address how this
string UpdX,X\T is incorporated into the new witnesses or how many witnesses
must change. It is possible in this model that some elements require very long
witness changes, while nearly all other witnesses can remain the same. Our result
addresses the separate question of how many witness changes are required.

We note a small gap in the Camacho-Hevia proof (and similarly in the
Baldimtsi et al. proof) in Section A of the appendix. In our proof, we address
this issue by defining the notion of a k-good revoked set.

9



4.2 Vector commitments

A vector commitment (VC) [10] stores a vector v = [v1, . . . , vk] in the form
of a succinct digest C. For each index i and corresponding component vi, the
scheme produces a proof πi that can be used alongside C to verify that vi = vi.
When a component is changed, the digest and proofs of some or all components
may change. Correctness dictates that properly generated proofs of true com-
ponents verify with their corresponding digests. Security dictates that it is hard
to find a proof for an incorrect component. Recently several vector commitment
schemes have been constructed with cryptocurrency applications in mind; see
[28,26,30,12,18].

Constructing a revocable proof system using a vector commitment scheme Our
construction commits to a vector storing valid statements. In describing our
construction, we use the syntax for a VC scheme from [26]. Let q be an upper
bound on the total number of valid statements. Let ⊥ be some special value used
to denote that there is no statement stored at that vector position. The Setup
function for our RPS calls the KeyGen function of the VC scheme with security
parameter λ and vector length n (the size of our initial valid set) to obtain public
parameters pp. The ComputeState function, given pp and an initial valid set S
of size n, first calls the commitment function of the VC scheme on the vector
[s1, s2, . . . , sn,⊥, . . . ,⊥] (using some arbitrary ordering of S). This outputs a
commitment C that is the global state, along with auxiliary information aux. To
generate the proof wi for each si, ComputeState then calls the Open function of
the VC given i, si, and aux. It outputs the commitment C and a proof wi for
each si. The Revoke function of our RPS, given T ⊆ S, revokes each statement
si ∈ T by setting the corresponding position of the committed vector to ⊥.
We describe how to do so assuming no batch updates, updating the state and
all proofs for each revocation before moving onto the next. More precisely, for
each si ∈ T , it calls VC.Update(C, si,⊥, i) to obtain an updated state C ′ and
update information U . It then updates the proof wj for each other component
sj using VC.ProofUpdate given C,wj , si, i, U . After all updates have been made,
it outputs all proofs and the resulting commitment. Finally, the Verify function
of our RPS, given C, si, wi, calls VC.Ver(C, si, j, wi) for each vector component
j. Verify outputs true if and only if there exists a j such that VC.Ver outputs
true.

We give an overview of how correctness and security for a VC scheme relate
to the corresponding definitions for a revocable proof system; full definitions of
correctness and security for a VC scheme are given in [10]. VC schemes offer cor-
rectness with overwhelming probability, ensuring that properly generated proofs
for committed components verify. See footnote 5 for a discussion of how this
compares to correctness with probability 1 for a revocable proof system. The
security definition for a VC guarantees that it’s hard for an adversary to find
two valid proofs for different values si and s′i of the ith component. This implies
security of our constructed revocable proof system: if an adversary finds a proof
w∗ of a statement s∗ that is not in the valid set, it has succeeded in finding a

10



proof that the value of the vector at some index i is s∗. Since s∗ is not in the
valid set, the actual value at i must be ⊥ or some other s′. The proof w of this
other value yields a pair of proofs that verify for different values at index i. Thus,
our constructed scheme is an RPS.

4.3 Authenticated dictionary

A related notion is an authenticated dictionary [17,23], which produces a com-
mitment to a set of key-value pairs, such that proofs of these stored pairs can
be generated and verified against the commitment. Throughout time, more key-
value pairs can be added, and existing pairs can be modified. When the dictio-
nary is updated, a new shared commitment is generated, potentially invalidating
old proofs. The existence of these proofs both for the original data and the up-
dated data corresponds to correctness for a revocable proof system. Security of
an authenticated dictionary guarantees that it is difficult to generate proofs of a
key-value pair that is not in the stored set. The argument that we can construct
a revocable proof system from an authenticated dictionary is along the same
lines as the arguments from vector commitments and accumulators. One way to
see this is to observe that we can construct a vector commitment scheme using
an authenticated dictionary, by storing the vector index-value pairs as key-value
pairs in the dictionary. Authenticated dictionaries therefore fit the framework of
a revocable proof system, and thus our lower bound holds, implying that proofs
must be updated often.

Aardvark [21], a recently proposed distributed authenticated dictionary with
applications to stateless blockchains, proposes an interesting versioning scheme
to overcome the need to change witnesses enough to accommodate many users
making transactions concurrently. We discuss this idea further in Section 5.2.

5 Implications for blockchains

Blockchains typically operate in one of two models: the unspent transaction out-
put (UTXO) model or the account-based model. A stateless blockchain functions
slightly differently in each of these models. We describe the models below and
argue that each requires the functionality of a revocable proof system, meaning
that our lower bound from Theorem 1 holds.

UTXO model. In the UTXO model, the global state stores the set of unspent
coins. When a user wants to make a transaction, they must specify the coin(s)
(UTXOs) they wish to spend and submit a proof that these coins are unspent.
A stateless blockchain needs to satisfy correctness: a proof for an unspent coin
should verify against the corresponding global state. If the transaction is suc-
cessful, the global state is updated, and the spent coins’ proofs should no longer
verify. In order to prevent users from double spending, it should be compu-
tationally hard to produce a proof for a spent coin—this is equivalent to the
definition of security for a revocable proof system. A stateless blockchain in the

11



UTXO model is commonly constructed using a dynamic accumulator, where
the accumulated set is the set of valid UTXOs. Such accumulators include RSA
accumulators [4], Merkle-tree-based accumulators [16,7], and Verkle trees [6].

Account-based model. In the account-based model, the global state stores a list
of account-balance pairs. Each account owner, or user, maintains a proof of
their account balance. When a user u wants to make a transaction, they submit
a proof π that their account-balance pair is included in the global state. The
validator verifies the user’s account balance using this proof, and they check
that the balance is high enough to make the desired transaction. The amount
spent is then deducted from the user’s balance, and the global state is updated
accordingly.

In the context of a revocable proof system, the valid set is the set of account-
balance pairs. An account-balance pair is revoked when the corresponding user
makes a transaction, changing their account balance. Security ensures that it
is hard to generate a proof for an incorrect account-balance pair. Correctness
ensures that every user can prove that their true account balance is valid. An
account-based blockchain is often constructed using a vector commitment or
authenticated dictionary, where each index of the vector represents an account
and the value is that account’s balance (e.g., [26]).

5.1 Interpreting our bound in practice

An interesting question is exactly what implications Theorem 1 has for practical
stateless blockchains. Toward answering this, we graph the number of witness
(or proof) changes for various parameter values.

We first apply Theorem 1 to obtain a lower bound on the number of witness
changes required after some number m deletions, given an initial valid set of size
n. The number of possible deleted sets of size m is

(
n
m

)
≥ nm

mm (by, e.g., [13]).
Ideally, we would like at least half of these sets to (1) require few (≤ k for some
k) witness changes, and (2) allow no deleted elements to be double spent. These
are exactly the conditions for a k-good revoked set; thus, in our application of
Theorem 1 we can set |X ∗k | = 1

2

(
n
m

)
≥ nm

2mm . Our next step is to obtain a lower
bound for k, showing that many witnesses must change.

Rearranging, we have ⌈k lg n⌉ ≥ lg nm

2mm − |V |. Simplifying further,

k lg n ≥ m lg n−m lgm− |V | − 2

k ≥ m− |V |+m lgm

lg n
− 2

lg n
(1)

Let f(m,n, |V |) denote the right hand side of Equation 1. We graph f , showing
that if at least half of the sets of size m are k-good revoked sets, k must be
at least f(m,n, |V |). In our graphs, we use two natural values of n. The first
is 233, approximately the world’s current human population. The second is 226,

12



Fig. 1. Number of witness changes f(m,n, |V |) given 0 ≤ m ≤ 106 deleted elements, a
data universe of size n = 233, and varying global state size |V |.

approximately the current number of UTXOs in Bitcoin [15]; these graphs are
included in Section B of the appendix.

In Figure 1, we can see that the relationship between f and m is approxi-
mately linear, with the m lgm

lgn term having little impact since m is small relative
to n in our ranges. Furthermore, increasing the size of the global state V results
in a horizontal shift of the curve and has little benefit until it becomes very large.

Like Figure 1, Figure 2 shows that there is not a useful trade-off between the
global state size and the number of witness changes per day. The global state size
must become very large, at least 222 for most throughput values, before there is
much impact on the number of witness changes. This concrete effect mirrors the
asymptotic relation of by Corollary 1.

While the number of witness changes may seem small in comparison to the
number of UTXOs or accounts in the system, without some additional recovery
mechanism, the consequences of a user missing their witness update are severe
as they will no longer be able to make transactions. Furthermore, if the system
has enough throughput to adequately serve the data universe, there will be
many more witness changes: for 24,000 transactions per second (the maximum
throughput supported by Visa [29]) the number of witness changes per day for
n = 233 becomes roughly 1.25×108, as shown in Figure 5. Our graphs show that
if most users are not willing to refresh their witnesses continually, hundreds of
thousands of these users will lose their coins per day. As a result, most stateless
blockchain proposals have included a way for lazy users to obtain updated proofs,
at the cost of more storage for certain parties; the most prominent such solution
uses proof-serving nodes (PSNs). Below, we discuss two more limited solutions

13



Fig. 2. Number of witness changes per day for a data universe of size n = 233 and
varying global state size, for blockchains with various throughput. In particular, Bitcoin
and Ethereum support roughly 7 and 20 transactions per second respectively.

(a versioning model and a partially persistent model), then conclude with a
discussion of PSNs and potential future work relating to them.

5.2 Versioning model

An issue arises when at some time t, many users simultaneously provide a proof
of their account balance (an element in the authenticated dictionary) and a
transaction that they wish to make (an update of their element in the dictionary).
If the transactions are executed in sequence, each user’s transaction requires
updating the dictionary, invalidating the other users’ proofs. One solution is
to store this set of transactions temporarily, so we can verify each user’s proof
against the global state at time t and then check manually that none of the
subsequent transactions changed that user’s account balance. We call this a
versioning system.

Aardvark [21], an authenticated dictionary designed with cryptocurrency ap-
plications in mind, does essentially this: it stores all transactions that happen in
the next τ time, for some tunable time parameter τ . The current state commit-
ment at time t is also stored. At a future time up to t+ τ , any proof at least as
recent as time t can still be verified by checking it against the state commitment
at time t, then naively checking that it does not conflict with the cached trans-
actions. This approach essentially ensures that proofs do not need to change for
k transactions by storing k additional state, where k is the number of trans-
actions happening in time τ . This matches our lower bound from Corollary 2
(up to constants), which when translated to this setting says that if we want no

14



proof changes when deleting k elements, we must store at least k state. Thus,
this versioning scheme is essentially the best one can hope to achieve without
introducing parties such as PSNs storing more state (see, e.g., [24,28,26]).

5.3 Partially persistent model

A desirable feature of a stateless blockchain is that users know in advance when
their proofs will need to change, so they can go online only at that time. Perhaps
users could pay a fee for the guarantee that their proofs will remain valid for
some number of transactions in the future. A natural question is how much
additional state is necessary to accommodate these special requests.

This property is exactly our notion of persistence: the persistent set S∗ cor-
responds to the set of proofs that are guaranteed to remain valid. Unfortunately,
Corollary 2 says that any secure and correct revocable proof system with a per-
sistent set S∗ must have global state size at least |S∗| − 1. If any significant
portion of the user base wants persistent proofs, the stateless blockchain model
does essentially no better than storing the full state.

We can achieve persistence if users are willing to lock up their coins for a set
period of time. That is, a user wanting their proof to remain valid for at least a
day would sacrifice their ability to spend their coin during that day. We could
then separate the blockchain into two state commitments: one state S1 storing
the set of locked coins and another state S2 storing all other (liquid) coins. Since
locked coins can only be spent at the end of the day, S1 remains the same and no
proofs of locked coins change throughout the day. At the end of the day, users
may unlock their coins and move them from S1 to S2. We could extend this
scheme to support other time ranges, incurring the cost of extra storage as more
time ranges are supported.

While potentially helpful in limited settings, this model has serious drawbacks
for general use. The most obvious is the fact that users cannot spend their locked
coins. Furthermore, the benefits are all-or-nothing in the following way: If a user
wants to maintain any liquid coins, they must continually update these liquid
coins’ witnesses, at which point updating their locked coins’ witnesses would
require minimal additional effort.

5.4 Proof-serving node model

Prior work proposes offloading witness updates to a proof-serving node (PSN)
[24,28,26]. Instead of maintaining its proof itself, a user can delegate this task
to a PSN and come online only when it wishes to make a transaction. In any
revocable proof system, the PSN can update a user’s proof simply by using the
Revoke algorithm. The storage required for this simple approach scales with the
number of users: the PSN can serve k users by storing only these users’ proofs
and constantly checking for updates. This property that PSNs can use storage
proportional to the number of proofs they maintain somewhat mitigates the
centralization issues posed by requiring storing a large state, allowing anyone
to operate a small PSN. PSNs also interact nicely with hybrid nodes, a newly

15



introduced [19] type of node that stores much less state than full nodes yet
can perform nearly all full node functionalities. The PSN model is especially
promising in light of our result that there is no holy grail revocable proof system
achieving few witness updates on its own.

However, centralization is still a major concern with PSNs, and the PSN
model raises interesting questions regarding incentives. PSNs must be incen-
tivized in some way to do this work. Hyperproofs [26] suggests a PSN model
where users pay PSNs to maintain their proofs for them. This payment model
seems to have an interesting relationship with batch updates, which hyperproofs
also allow. That is, while it takes a user time t to update a single proof, a PSN
can update the proofs of all n users in the system in time t · f(n) (for some
sublinear function f). PSNs that serve enough users to take advantage of batch
updates can offer much cheaper prices than small PSNs. There can only be a
few PSNs that serve this many users. The resulting system will have a few PSNs
storing the full state, and the users they serve will store nothing. This is a sig-
nificant risk: an adversary that attacks these PSNs can compromise the entire
blockchain, preventing many users from spending their coins.

Acknowledgments. This research was conducted primarily at a16z crypto re-
search. Miranda Christ was also supported in part by NSF Award CCF-2107187,
by JPMorgan Chase & Co, by LexisNexis Risk Solutions, and by the Algorand
Centres of Excellence programme managed by Algorand Foundation. Joseph
Bonneau was also supported by NSF Award CNS-1940679 and DARPA Award
HR00112020022, and served as a technical advisor to Mina. Any opinions, find-
ings, and conclusions or recommendations expressed in this material are solely
those of the authors.

16



References

1. Abusalah, H., Fuchsbauer, G., Gaži, P., Klein, K.: SNACKs: Leveraging Proofs of
Sequential Work for Blockchain Light Clients. Cryptology ePrint Archive, Paper
2022/240 (2022)

2. Baldimtsi, F., Camenisch, J., Dubovitskaya, M., Lysyanskaya, A., Reyzin, L.,
Samelin, K., Yakoubov, S.: Accumulators with applications to anonymity-
preserving revocation. In: IEEE Euro S&P (2017)

3. Benaloh, J., Mare, M.d.: One-way accumulators: A decentralized alternative to
digital signatures. In: Eurocrypt (1993)

4. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with ap-
plications to IOPs and stateless blockchains. In: Annual International Cryptology
Conference (2019)

5. Bonneau, J., Meckler, I., Rao, V., Shapiro, E.: Mina: Decentralized cryptocurrency
at scale. https://docs.minaprotocol.com/static/pdf/technicalWhitepaper.
pdf (2020), accessed: 2022-08-09

6. Buterin, V.: A state expiry and statelessness roadmap. https://notes.ethereum.
org/@vbuterin/verkle_and_state_expiry_proposal

7. Buterin, V.: The stateless client concept. https://ethresear.ch/t/
the-stateless-client-concept/172 (2017)

8. Camacho, P., Hevia, A.: On the impossibility of batch update for cryptographic
accumulators. In: LatinCrypt (2010)

9. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: CRYPTO (2002)

10. Catalano, D., Fiore, D.: Vector commitments and their applications. In: PKC
(2013)

11. Chen, W., Chiesa, A., Dauterman, E., Ward, N.P.: Reducing participation costs
via incremental verification for ledger systems. Cryptology ePrint Archive, Paper
2020/1522 (2020), https://eprint.iacr.org/2020/1522, https://eprint.iacr.
org/2020/1522

12. Chepurnoy, A., Papamanthou, C., Srinivasan, S., Zhang, Y.: Edrax: A Cryptocur-
rency with Stateless Transaction Validation. Cryptology ePrint Archive, Paper
2018/968 (2018)

13. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms.
MIT press (2022)

14. Dai, W.: b-money. http://www.weidai.com/bmoney.txt (1998)
15. Delgado-Segura, S., Pérez-Sola, C., Navarro-Arribas, G., Herrera-Joancomartí, J.:

Analysis of the Bitcoin UTXO set. In: Financial Crypto (2018)
16. Dryja, T.: Utreexo: A dynamic hash-based accumulator optimized for the bitcoin

utxo set. Cryptology ePrint Archive, Paper 2019/611 (2019)
17. Goodrich, M.T., Shin, M., Tamassia, R., Winsborough, W.H.: Authenticated dic-

tionaries for fresh attribute credentials. In: Trust Management (2003)
18. Gorbunov, S., Reyzin, L., Wee, H., Zhang, Z.: Pointproofs: Aggregating proofs for

multiple vector commitments. In: ACCM CCS (2020)
19. Hegde, P., Streit, R., Georghiades, Y., Ganesh, C., Vishwanath, S.: Achieving

almost all blockchain functionalities with polylogarithmic storage. In: Finan-
cial Cryptography and Data Security: 26th International Conference, FC 2022,
Grenada, May 2–6, 2022, Revised Selected Papers. pp. 642–660. Springer (2022)

20. Kattis, A., Bonneau, J.: Proof of Necessary Work: Succinct State Verification
with Fairness Guarantees. In: Financial Crypto (2023), https://eprint.iacr.
org/2020/190.pdf

17

https://docs.minaprotocol.com/static/pdf/technicalWhitepaper.pdf
https://docs.minaprotocol.com/static/pdf/technicalWhitepaper.pdf
https://notes.ethereum.org/@vbuterin/verkle_and_state_expiry_proposal
https://notes.ethereum.org/@vbuterin/verkle_and_state_expiry_proposal
https://ethresear.ch/t/the-stateless-client-concept/172
https://ethresear.ch/t/the-stateless-client-concept/172
https://eprint.iacr.org/2020/1522
https://eprint.iacr.org/2020/1522
https://eprint.iacr.org/2020/1522
http://www.weidai.com/bmoney.txt
https://eprint.iacr.org/2020/190.pdf
https://eprint.iacr.org/2020/190.pdf


21. Leung, D., Gilad, Y., Gorbunov, S., Reyzin, L., Zeldovich, N.: Aardvark: An
Asynchronous Authenticated Dictionary with Applications to Account-based Cryp-
tocurrencies. In: USENIX Security (2022)

22. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
23. Papamanthou, C., Tamassia, R.: Time and space efficient algorithms for two-

party authenticated data structures. In: Information and Communications Security
(2007)

24. Reyzin, L., Meshkov, D., Chepurnoy, A., Ivanov, S.: Improving Authenticated
Dynamic Dictionaries, with Applications to Cryptocurrencies. Cryptology ePrint
Archive, Paper 2016/994 (2016)

25. Shannon, C.E.: A mathematical theory of communication. The Bell system tech-
nical journal 27(3), 379–423 (1948)

26. Srinivasan, S., Chepurnoy, A., Papamanthou, C., Tomescu, A., Zhang, Y.: Hyper-
proofs: Aggregating and maintaining proofs in vector commitments. IACR Cryptol.
ePrint Arch. 2021, 599 (2021)

27. Todd, P.: Making UTXO Set Growth Irrelevant With Low-Latency Delayed TXO
Commitments. https://petertodd.org/2016/delayed-txo-commitments (2016)

28. Tomescu, A., Abraham, I., Buterin, V., Drake, J., Feist, D., Khovratovich, D.:
Aggregatable subvector commitments for stateless cryptocurrencies. Cryptology
ePrint Archive, Paper 2020/527 (2020)

29. Visa: Visa acceptance for retailers. https://usa.visa.com/run-your-business/
small-business-tools/retail.html

30. Wang, W., Ulichney, A., Papamanthou, C.: BalanceProofs: Maintainable Vector
Commitments with Fast Aggregation. Cryptology ePrint Archive, Paper 2022/864
(2022)

31. Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger
(2014)

A Camacho-Hevia proof

Like our proof of Theorem 1, the Camacho-Hevia [8] proof uses a compression
argument, considering an adversary that computes witnesses wi for each element
xi of an accumulated set X, then uses this information to reconstruct a random
deleted set T ⊆ X of size m. The adversary receives the accumulator value A′ for
a set X \T , along with a string of information used to update each witnesses wi

to a proof w′i for the new accumulator value A′. The adversary then determines
whether each xi is in T by checking whether w′i verifies with A′. The authors
conclude that the adversary can correctly reconstruct T , and therefore the global
state and the witness update information must together be at least Ω(m) bits
long. In part of their proof that the adversary succeeds in learning T , the authors
argue that by security, if the proof w′i for xi does verify with with A′, xi must
not have been deleted.

However, there is a gap in this argument: accumulators have computational
security with probability less than 1, meaning that there exist proofs w′i that
verify for deleted elements xi, but they should be hard to find. In fact, since
there may be exponentially many (in the security parameter) possible deleted
sets T , it is likely that some sets T will yield verifying proofs w′i for deleted

18

https://petertodd.org/2016/delayed-txo-commitments
https://usa.visa.com/run-your-business/small-business-tools/retail.html
https://usa.visa.com/run-your-business/small-business-tools/retail.html


elements. Fortunately, this issue has no impact on their bound asymptotically,
since computational security still requires that nearly all sets T lack verifying
proofs for deleted elements. We include a condition to capture this issue in our
definition of a k-good revoked set, requiring that no proofs of deleted elements
verify. The Camacho-Hevia argument works for deleted sets T with this property,
and one can show that security implies that there are many such sets T .

B Additional figures

Fig. 3. Number of witness changes f(m,n, |V |) for number of deleted elements m, a
data universe of size n = 226, and varying global state size |V |.

19



Fig. 4. Number of witness changes per day for a data universe of size n = 226 and
varying global state size and throughput. In particular, Bitcoin and Ethereum support
roughly 7 and 20 transactions per second respectively.

Fig. 5. Number of witness changes per day for a data universe of size n = 233 and
varying global state size, for blockchains with throughput up to 24,000 transactions
per second.

20


	Limits on revocable proof systems,with implications for stateless blockchains

