
Demystifying Web3 Centralization:
The Case of Off-Chain NFT Hijacking

Felix Stöger1, Anxin Zhou2, Huayi Duan1, and Adrian Perrig1

1 ETH Zürich, Zürich, Switzerland
2 City University of Hong Kong, Kowloon, HKSAR

Abstract. Despite the ambitious vision of re-decentralizing the Web as
we know it, the Web3 movement is facing many hurdles of centralization
which seem insurmountable in the near future, and the security impli-
cations of centralization remain largely unexplored. Using non-fungible
tokens (NFTs) as a case study, we conduct the first systematic analysis
of the threats posed by centralized entities in the current Web3 ecosys-
tem. Our findings are concerning: almost every interaction of a user with
a centralized entity can be exploited to hijack NFTs or cryptocurren-
cies from the user. Moreover, all attacks we discovered can be launched
through network attacks practical today. Our measurement results fur-
ther show that many big players in the NFT market are vulnerable to the
attacks, placing large financial investments at risk. While our analysis of
NFTs has been fruitful, it is just a starting point to reveal the pervasive
centralization issues in the vast Web3 space.

1 Introduction

We are witnessing an increase in popularity of re-decentralizing web services pro-
vided by big corporations today, which is portrayed as the transition from Web2
to Web3. In the envisioned Web3 paradigm, all web services or applications are
hosted by decentralized infrastructures, in particular blockchains supporting pro-
grammable smart contracts. A defining feature of such decentralized applications
(DApps) is that they do not rely on any single entity for their governance and
operation [30]; as a result, users can access DApps without trusting any single
entity. However, practical DApps usually deviate from this idealized model and,
somewhat inevitably, employ centralized platforms for reasons of cost, perfor-
mance, and usability. Many real-life incidents have shown that those centralized
components are inviting targets for attackers [36,26,31,16,15].

These attacks pose serious threats to the growing Web3 ecosystem, but they
have not received equal attention from the research community compared with
vulnerabilities in blockchain protocols [17,43,38,25] or smart contracts [11,33,35],
as we further discuss in Section 2. It is important and urgent to fill this gap,
given the prevalence of centralized entities in the current Web3 ecosystem, the
complex interactions of them with other parties, and hence the potential massive
attack surface therein.

2 F. Stöger et al.

We initiate a systematic study of the security issues induced by centralization
in Web3, focusing on the sub-ecosystem around non-fungible tokens (NFTs). Re-
stricting the scope is necessary for in-depth analysis because Web3 encompasses
numerous aspects, and the reasons for choosing NFTs are three-fold. First, NFTs
are among the most popular Web3 concepts with a multi-billion dollar mar-
ket [46]. Second, NFTs establish the fundamental and ubiquitous notion of asset
ownership for Web3, and so they will persist even if high market valuations
should decline. For instance, after the initial standard [24], the Ethereum com-
munity has a series of proposals to bring NFTs closer to the practical realm from
usability [42,9] and legal perspectives [27]. Third, the NFT sub-ecosystem is suf-
ficient to demonstrate common centralization issues, as it involves different cen-
tralized entities. The introduction of these entities essentially changes the ways
users interact with decentralized infrastructures. Thus, we are interested in new
attack vectors arising from these interactions rather than vulnerabilities in the
entities themselves. More specifically, we consider practical network adversaries
capable of intercepting these new interactions that are otherwise non-existent
in a fully decentralized architecture. This can reveal, instead of security issues
pertinent to specific system design or implementation, generic architecture-level
problems due to centralization.

Our work starts by defining an abstract model that captures the essential
entities in today’s NFT ecosystem and the interactions between them for the
creation, tracking, and trading of NFTs. By instantiating this model with con-
crete architectures employing varying forms of centralization, we systematically
examine each interaction and the potential exploits therein. As a result, we find
that almost every interaction of a user with a centralized entity leads to an at-
tack that can hijack NFTs (or the associated cryptocurrencies). Such hijacking
is off-chain in that it involves no exploitation of the underlying blockchain or
smart contracts powering the NFTs. We have validated all but one families of
attacks we discovered with practical systems. Furthermore, our measurement of
major players in the NFT market shows that many of them, including 6 out of
10 largest marketplaces, are susceptible to our hijacking attacks.

Our use of NFTs as a slice of the Web3 universe to investigate centralization
risks is just a starting point. The methodology we developed in this work can also
be applied to analyze DApps beyond NFTs. To sum up, we make the following
contributions in this paper.

– A taxonomy of off-chain hijacking attacks for the NFT ecosystem.
– Empirical validation of these attacks’ practicality and applicability.
– Measurement of vulnerable entities in the NFT ecosystem.

2 Related Work

We review security research on NFTs and DApps as well as the underlying
blockchain and smart contract platform, followed by a brief discussion of prac-
tical network attacks that underpin our NFT hijacking attacks.

Demystifying Web3 Centralization: The Case of Off-Chain NFT Hijacking 3

Research on NFT security. In a blog post [37], Moxie Marlinspike provides
his reflection on Web3 by experimentally building DApps that allow users to
mint and exchange NFTs. Through the experiments, he points out the fact that
most existing DApps are not as decentralized as claimed due to their reliance on
centralized servers. These servers can return arbitrary data associated with NFTs
to users, and marketplaces like OpenSea can unilaterally remove these NFTs from
their listings. This indicates a clear violation of DApps’s fundamental principle
that their operation should not be influenced by any centralized authority. A
recent study by Das et al. analyzes today’s NFT ecosystem and security issues
therein [22], for example insufficient user authentication and unverifiable smart
contracts by NFT marketplaces, lack of persistent asset data storage by external
entities, and malpractices by NFT traders. Kapoor et al. analyze how social
media can influence the valuation of NFTs [32].

To the best of our knowledge, we are the first to perform an in-depth analysis
of the vulnerabilities introduced by various forms of centralization in the NFT
ecosystem. Unlike previous work [37,22] that discusses issues arising from (cen-
tralized) entities themselves, we inspect architecture-level vulnerabilities rooted
in the extra interactions induced by centralized entities, and our attacks work
even if these entities behave correctly and honestly.

Attacks on DApps. Su et al. [45] perform an extensive measurement of DApps
attack traces from the Ethereum transaction history. They identify common
attack patterns and develop a methodology to automatically discover exploits
of a DApp from related transactions. These attacks make use of design and
implementation flaws in smart contracts and thus are orthogonal to what we
consider in this paper.

Representing a major class of DApps, decentralized finance (DeFi) aims to
do away with traditional financial institutions like banks and exchanges. How-
ever, the transparency and high transaction latency of the blockchain platform
makes DeFi services susceptible to manipulation, for example front running [21]
and sandwiching attacks [48]. Similar to the case of NFTs, practical DeFi plat-
forms [8,1] rely on centralized components like web servers and blockchain gate-
ways. Therefore, our attacks on NFTs can also apply to DeFi services.

Recently, Wang et al. [47] quantify the security risks of unlimited approval of
ERC20 tokens (aka cryptocurrencies, which are fungible) when used by DApps.
Some of our attacks also exploit the fact that the trade of NFTs requires their
owners to approve the delegation of control to marketplaces.

Li et al. [34] find that centralized intermediary services used by DApps can
be turned into attack vectors for denial of service (DoS). This demonstrates the
risk of centralization from another angle.

Blockchain and smart contract security. Many attacks on blockchain con-
sensus protocols have been found [17,43,38,25]. Attacks on blockchains’ network
layer [39] or execution layer [40] also exit. In comparison, our work explores a
new class of security threats arising from external entities which are not part of
a blockchain network but widely exist for practical reasons.

4 F. Stöger et al.

Programming errors in smart contracts are common sources of exploits [11,33].
Different tools have been developed to discover security bugs in smart contracts
via static [35,41] or dynamic analysis [29]. Such tools, however, cannot detect
our attacks because we do not exploit any flaws in smart contracts themselves.
Practical network attacks. Many fundamental Internet protocols, including
Border Gateway Protocol (BGP) for routing and Domain Name System (DNS)
for naming, are not secure by design. An off-path network adversary can ma-
liciously take over different Internet resources (IP addresses, domain names,
certificates, etc.) through BGP or DNS hijacking [19], leading to attacks on a
wide range of critical Internet services and applications [18]. While there are
prior studies of attacks against blockchain networks [10,28,23], we for the first
time investigate practical network-based attacks in the realm of Web3.

3 Abstract Model for NFT Functionality

The NFT ecosystem contains different entities revolving around the creation,
tracking, and trading of NFTs. Despite their variety (e.g., over 50 active mar-
ketplaces exist [6]), the design of practical systems to realize the functionality of
NFTs follows a common set of patterns. We define an abstract model to capture
this essential functionality and later use instantiations of it to conduct fine-
grained security analyses. Figure 1 depicts our model. It consists of two classes
of entities: users (in shaded area) and service providers. They interact with each
other through predefined interfaces, which comply with the widely implemented
Ethereum standard EIP-721 [24]. In real systems, some of the interactions may
be merged into a single action, and new interactions may be introduced. Our
model captures the typical life circle of NFTs as seen today.

3.1 Data and Interfaces

Our model has three types of service providers: ownership registry, asset stor-
age, and NFT marketplace (NFTM). We elaborate their interfaces and data
(illustrated in the dashed boxes in Figure 1) one by one.
Ownership registry. NFTs are essentially ownership records of some digital or
physical assets. An ownership registry permanently stores these records and of-
fers operations on them. Each record is defined by 4 fields. The first and foremost
is TID that uniquely identifies an NFT; in practice, this is implemented through
the pair of a globally unique smart contract address and a locally unique token
index. The other three fields are: OID identifying the token’s owner, tokenURI
which is a pointer to the underlying asset, and delegatee which is an entity
who can control the token on behalf of its owner. The registry expose four inter-
faces: (1) Register to create a new NFT record with all fields except delegatee
properly initialized to non-empty values, (2) Transfer to change the owner of
a token by updating its OID, (3) Delegate to set the delegatee for a token, and
(4) Read to retrieve a record given a TID. Note that in practice tokenURI can be
accompanied by other metadata like textual description of the NFT. We assume

Demystifying Web3 Centralization: The Case of Off-Chain NFT Hijacking 5

��������������������

��������������������

����������������
��

���������������������
����

������������������
	���������������
��������
�����

	�����������������
���������
������

�������
���

������������������
������
��������������
������
�
�	��

	�����
����������
	�����
������������

������

���
	������������
�����������������������
�

���������������

�������������������

�����������������������

����

�������������������� ���������������������
������������������������ ������������������ �������

������

�
����������
����������

���	�
� �

����� �

����� �

��

��

��
��
��
��

��

���

��

��
�����
������

��
������

��

Fig. 1: Our abstract model to capture the essential functionality of NFTs.

that once an NFT is created its tokenURI cannot be updated. Also, we do not
consider the possible destruction of an NFT.
Asset storage. The assets associated with NFTs are maintained in an asset
storage. Here we consider two basic interfaces to store and retrieve the asset
of a given TID. Unlike an ownership registry that is hosted on a blockchain by
default, asset storage systems are almost always off-chain and come in various
forms, as we discuss in the next section.
NFTM. NFTs must be tradable to create value. This is enabled by an NFTM
that connect buyers and sellers. The most important data maintained by the
NFTM is an orderbook, which keeps track of the current sell and buy orders.
Here 5 interfaces are exposed to users: (1) List for a seller to offer a token
for sale, (2) Accept for a seller to accept a buyer order or bid, (3) Browse for
users to read the catalog of tokens for sale, (4) Purchase for a buyer to buy a
listed token, and (5) bid for a buyer to bid for a token in auction. The NFTM
updates it orderbook according to these actions and process a ownership transfer
transaction whenever a buy order matches a sell order.

3.2 NFT Life Cycle

Users in our model can take three roles: creator, seller, and buyer. We describe a
typical NFT life cycle through their interactions with service providers. We use
the notation X action(in → out) to represent the invocation of an interface
action, which takes in as input and returns out to the caller, in an interaction.
For ease of exposition, we omit non-critical data in some interactions.
Creation. The creator of an NFT can vary, for example the artist creating the
digital asset, or a party entrusted by the asset creator with the task of tokenizing

6 F. Stöger et al.

the asset. We do not distinguish these cases. To start with, the creator uploads
the asset through 1A Store(asset → tokenURI). Then, it creates a token by
calling 1B Register({OID, tokenURI} → TID), which results in a new record
stored by the ownership registry.
Listing. The owner of a token offers it for sale through 2A List({TID, OID, ask}
→). The invoked marketplace needs permission to transfer the token without the
seller’s further involvement. This is done via 2B Delegate({TID, Mkt} →), where
the delegatee of token TID is set to the marketplace identified by Mkt.
Trading. A buyer interacts with all three service providers to buy an NFT. It
starts by retrieving available sell orders from the marketplace via 3A Browse(→
{TID, ask, seller}). Here we assume only a single sell order is returned. To ex-
amine the associated asset, the buyer first gets the token’s metadata by calling
3B Read(TID→ tokenURI) from the ownership registry and then fetches the asset
by calling 3C Retrieve(tokenURI→ asset) from the storage provider. Market-
places normally offer two buying options: direct purchase or auction. In the for-
mer case, the buyer directly offers the asked price and calls 3D Purchase({TID,
ask, buyer} →). In the latter case, the buyer places a bid via 3D’ Bid({TID,
bid, buyer} →), which results in a buy order stored in the orderbook. Upon a
successful sale, the NFTM transfers the token to the new owner by calling 3E
Transfer({TID, buyer} →) without the seller’s involvement. Note that this is
possible because the NFTM has been approved by the seller before.

4 System Architecture & Attack Taxonomy

We consider four instantiations of our abstract model and describe concrete at-
tacks present in three of them. We first present a fully decentralized architecture
where every service provider is implemented on, and accessed through, a decen-
tralized system. In each subsequent architecture, one service is hosted centrally,
or accessed through a centralized intermediary (CI). Table 1 summarizes the
attack potential created by centralized entities in different architectures.
Adversary model. We consider an off-path network adversary who is capable
of intercepting communication between a user and a centralized entity through
BGP or DNS hijacking [19]. Even if the communication is secured by the now
widely deployed Transport Layer Security (TLS) protocol, the attacker can still
acquire a TLS certificate to impersonate the victim domain [13]. We assume
that any data hosted by decentralized infrastructures, including blockchains and
decentralized storage systems, is tamper proof and always verified by their nodes.

4.1 Architecture Type I: Fully Decentralized

In a fully decentralized and ideal architecture, the ownership registry and the
NFTM reside on a blockchain in the form of smart contracts. Users interact
with the service providers (e.g. to mint an NFT or to create a new listing) by
sending blockchain transactions to these smart contracts. Parameters such as

Demystifying Web3 Centralization: The Case of Off-Chain NFT Hijacking 7

Table 1: A summary of potential NFT hijacking attacks in different ar-
chitectures. Detectability 1 requires careful auditing of parameters to be
signed, 2 requires local merkle-tree file verification, 3 requires additional,
untampered accesses to the blockchain or IPFS, and 4 means undetectable.
Attack
family Architecture Detectability Outcome

A1: 1A Type II 2/4* NFT with attacker-controlled asset minted
A2: 3C Type II 2/4** Wrong NFT bought by buyer
A3: 1C Type III 4 Royalty payments sent to attacker

NFT sold to attacker for a too low amountA4: 2A Type III 1 NFT transferred to attacker
Buyer more likely to but attacker’s NFTA5: 3A Type III 3/4*** Buyer places higher bids than needed

A6: 3B’ Type III 3 Wrong NFT bought by buyer
A7: 3C’ Type III 3 Wrong NFT bought by buyer

Funds stolen from buyerA8: 3D Type III 1 Wrong NFT bought by buyer
Funds stolen from buyerA9: 3D’ Type III 1 Buyer bids in attacker’s auction

A10 3B : Type IV 4 Wrong NFT bought by buyer

* 2 if stored on IPFS, 4 if stored in centralized storage without integrity checks
** 2 if IPFS, 4 if Blockchain or centralized storage
*** 4 if centralized access or off-chain orderbook, 3 if on-chain orderbook

the list price of an NFT are encoded within the transaction data. Asset storage
can reside either on the blockchain or on a decentralized storage network such
as the Interplanetary Filesystem (IPFS) [4]. In IPFS, files are split into shards
which together with a checksum form the leaf nodes of a Merkle-DAG [12]. The
content identifier used to query the IPFS network references the Merkle-DAG’s
root node, which in turn enables data integrity verification. Since IPFS is the
most popular storage solution in today’s NFT ecosystem, we will use it as the
representative for all decentralized storage networks.

In this architecture, users operate their own blockchain nodes or light clients,
and if the assets storage resides on IPFS, also IPFS nodes. This allows users
to benefit from the data integrity guarantees provided by these decentralized
infrastrucures. To access an on-chain NFTM, users need specialized explorer
software that renders the relevant data (token listings, market orders, digital
assets, etc.) retrieved from local blockchain or IPFS nodes. They do not need to
interact with any centralized entities.

Security. This model enables end-to-end validation of all actions performed by
the users. The creator in 1A is ensured that the asset is uploaded correctly to
the asset storage and that the returned pointer actually references the asset. The
Register transaction sent in 1B is signed with the creator’s blockchain private
key and is therefore cryptographically protected against tampering. The seller’s

8 F. Stöger et al.

interactions 2A and 2B are transactions signed with the seller’s blockchain
private key and are thus also protected against tampering. When the buyer
browses the NFTM’s orderbook in 3A and retrieves the tokenURI in 3B , all
data is read from the local, consistent blockchain state if the buyer uses a full
node, or if the buyer operates a light client, it is received in a verifiable way from
supporting full nodes. The tokenURI is queried in 3C which either involves
reading the blockchain state or a Retrieve call to the IPFS network. Because
a local IPFS node verifies that the retrieved asset matches the queried asset
reference, the user is guaranteed to also retrieve the correct asset if IPFS is used.
Buying and bidding in 3D and 3D’ are again signed blockchain transactions and
are thus protected. We conclude that in this idealized architecture, an adversary
cannot hijack NFTs without breaking the underlying decentralized mechanisms.

4.2 Architecture Type II: Centralized Asset Storage

Asset storage can be centralized either by accesses to it being centralized, or
by the data itself being stored centrally. For centralized access, we differentiate
between Blockchain as a service (BaaS) providers if the asset is stored on-chain,
and IPFS gateways if the asset is stored on IPFS. These CIs run their own
infrastructure nodes and provide easy-to-use interfaces for users to interact with
blockchains and IPFS without joining the networks themselves. Both HTTP(S)
and WebSocket-based CIs are common. We discuss two attacks which apply to
both cases and we highlight important differences in the detectability of these
attacks for each setting.

Centralized Access. Although the assets storage is implemented on a de-
centralized system, users interact with the asset storage through a CI such as
the BaaS provider Infura and the IPFS gateway gateway.ipfs.io [3]. Because the
connection between the CI and the user is not part of the blockchain or IPFS
network, it is not protected by their respective integrity mechanisms. IPFS is
special because the asset identifier used to query the IPFS gateway is the same
reference used by IPFS internally and is thus a function of that file’s Merkle-
DAG root. Users can therefore, after downloading an asset, locally compute its
Merkle-DAG and compare it with the asset reference used in the query to the
IPFS gateway. This verification function however requires dedicated software, as
it is not built into commodity browsers such as Chrome or Firefox.

Centralized Storage. Asset storage can alternatively also be implemented
entirely on centralized infrastructure such as cloud providers like AWS or Azure,
or file hosters like Mega. From a security point of view, retrieving assets from such
an asset storage system is somewhat equivalent to fetching data from a regular
web server. The asset provider has to implement their own integrity mechanism
to ensure similar integrity guarantees as in decentralized asset storage.

Attacks. The loss of verifiability of interactions with the asset storage enables
attacks against interactions 1A and 3C . We highlight the data being modified
by each family of attacks in red.

Demystifying Web3 Centralization: The Case of Off-Chain NFT Hijacking 9

A1: Store(asset→ tokenURI). Assets are uploaded to the asset storage through
a CI. If the asset storage is on-chain, the Store command is implemented as a
call to a smart contract and because it changes the blockchain state, requires
a transaction. This transaction is cryptographically signed with the creator’s
private key and is thus, despite the existence of a CI, protected against tampering
by the attacker under our attacker model. If the asset is stored off-chain on
IPFS or on a centrally stored asset storage provider, no cryptographic signatures
are required when uploading the asset. Thus, an attacker under our attacker
model can hijack the connection and modify the uploaded asset, resulting in
a different, attacker-chosen, asset (e.g. image) being uploaded. The returned
tokenURI references the attacker-modified asset. If the creator then queries the
tokenURI to check whether the correct file was uploaded, the attacker can, again,
by hijacking the connection modify the returned asset to look like the intended
asset. The only way for a creator to notice the modification is when IPFS was
used, and the creator locally compared the Merkle-DAG of the genuine file with
the content identifier returned by the CI.

After uploading the asset, the actual NFT is created by calling Register({OID,
tokenURI} → TID). If the preceding Store operation was hijacked, the asset
referenced by the tokenURI was chosen by an attacker. Note that the actual
Register call was not tampered with by the attacker.
A2: Retrieve(tokenURI→ asset). Upon a call to retrieve, the asset storage
provider returns the requested asset. On-chain asset storage is queried through
a BaaS as a CI, which returns the asset to the requester. The returned data is not
authenticated by the blockchain, the channel between the BaaS and requester
is relied upon for authentication. IPFS asset storage similarly suffers from a
reliance on the communication channel between the IPFS gateway CI and the
requester. By using the offline integrity check capability of IPFS, the requester
can manually verify the file using the tokenURI used to query it. If the asset
itself is stored centrally, the any integrity checks provided by the asset storage
provider and the authentication of the channel protect the returned asset.

By hijacking the connection and modifying the returned asset, an attacker
can trick the buyer into believing it is looking at a more valuable NFT than is
actually the case. This attack can be used to trick a buyer into buying a less
valuable NFT offered by the attacker for the price of a more valuable asset. De-
tectability depends on the asset storage system used. In IPFS, and for centrally
stored asset storage if the provider offers integrity guarantees, the attack could
in principle be detected.

4.3 Architecture Type III: Centralized NFTM

Marketplaces can be centralized in a similar fashion: they can either be stored
in a decentralized infrastructure which is accessed through a CI, or by storing
part of the marketplace off-chain. The latter allows an attacker to tamper with
almost all interactions between users and marketplaces.
Centralized Access. In this architecture, the marketplace is implemented on a
blockchain as a smart contract. Users interact with it through the same NFTM

10 F. Stöger et al.

��������������������

��������������������

����������������
��

���������������������
����

������������������

������������������
	���������������
��������
�����

	�����������������
���������
������

�������
���

������������������
������
��������������
������
�
�	��
������
�
�	�� 	�����
����������

	�����
������������

������

���
	������������
�����������������������
�

���������������

�������������������
�������������������������

�����������������������

����

�������������������� ���������������������
������������������������ ������������������ �������

������

�
����������
����������

�������������
�� �����
������������
���	�	�	��	��� �������	�����

���	�
� �

����� �

����� �

��

��

��
��
��
��

��

���
��

��

��

��

Fig. 2: Centrally hosted NFTM Architecture. The Asset Cache* is optional.

explorer software described in the fully decentralized architecture of Sec. 4.1,
except that it does not interact with the user’s local blockchain node and instead
with a CI. The architecture is otherwise identical to the fully decentralized case.

Centralized Storage. We consider a marketplace that operates an off-chain
marketplace server (MS) which stores the NFTM’s orderbook, caches the tokenURI
of NFTs currently for sale, provides users with parameters to be included in
blockchain transactions and in buy/sell orders, and hosts a storefront with which
users can interact using a web browser. Transaction and order parameters are
provided by the MS because browsers, unlike NFTM explorer software, do not
have information like NFTM smart contract addresses hard coded. This is also
observed in real-world marketplaces like OpenSea and Rarible where the MS
provides all transaction and order parameters. Optionally, the marketplace can
already cache the asset itself. This is present in marketplaces like OpenSea,
Rarible, Foundation, etc.

By moving these capabilities off-chain onto the MS, interactions 3B , and if
the assets are cached then also interaction 3C , of the abstract model in Fig.
1 are removed. The buyer instead retrieves the tokenURI of NFTs currently
for sale from the MS in interaction 3B’ . If the MS also caches the assets, the
buyer fetches them in interaction 3C’ from the MS as opposed to from the asset
storage in interaction 3C .

We further differentiate two cases: (i) marketplace keeps a copy of the order-
book on-chain, and (ii) marketplace only stores the orderbook in the MS. Both
instantiations exist in practice, the marketplace Foundation keeps the orderbook
on-chain while OpenSea and Rarible store the orderbook exclusively off-chain.

Demystifying Web3 Centralization: The Case of Off-Chain NFT Hijacking 11

The NFTM however still has a smart contract deployed on the blockchain
which implements the matching of buy and sell orders and which issues the
transfer of ownership once a token has been sold.

Attacks. Centralized access to a marketplace server enables attacks A5 against
interaction 3A . All further attacks are possible in the presence of a centralized
MS.
A3: SetRoyalties({addr, amount} →). Creators can benefit from secondary
sales of their NFTs through royalties. Upon a secondary sale, the NFTM transfers
a fraction of the ask price to a creator-chosen wallet. Several popular NFTMs
such as OpenSea and Rarible store the royalty payout address centrally on their
MS. Updates to the payout address do not require the creator’s signature, the
creator only has to be logged into the MS. A creator setting its payout address
can fall victim to an attacker modifying the payout address sent to the MS.
A4: List({TID, OID, ask} →). Unlike in previous architectures, where function
call parameters are generated locally, MSes supply the user with these param-
eters. This additional interaction is not shown in Fig. 2 for brevity but it is
present in all further attacks involving an MS.

By sending the seller’s terms of sale, it notifies the MS about the intent to sell
an NFT. The parameters {TID, OID, ask} returned by the MS are susceptible
to being tampered by an attacker which can cause the seller to list an NFT
with a lower than intenden ask amount. The List call itself can not be modified
because it is signed by the seller. The parameters to Delegate the permission
to transfer an NFT are also provided by the MS. In a similar attack, the Mkt
parameter included in Delegate({TID, Mkt} →) can be changed to instead make
the attacker a delegatee. Although the data included in the List and Delegate
calls are shown to the seller for auditing, they are often not decoded properly
and are thus difficult to verify.
A5: Browse(→ {TID, ask, seller}). By increasing the ask amount returned by
the MS in competing sell orders by legitimate sellers, an attacker gets an unfair
advantage because its listings appear cheaper than others. For auctions, Browse
additionally fetches bids {TID, bid, buyer}. Increasing the bid amount can cause
the buyer to bid a higher than necessary amount to win the auction. This attack
is also possible against on-chain NFTMs accessed through a CI. To detect this
attack, the buyer needs secure, untampered access to the orderbook. Detection
for NFTMs without on-chain orderbooks is difficult unless they provide read
access to their off-chain orderbook which includes cryptographic authentication
of the sellorders.
A6: Read(TID→ tokenURI). Modifications to the tokenURI by the attacker cause
the buyer to erroneously fetch an attacker-chosen asset in the subsequent inter-
action 3C or 3C’ . Detecting this modifications requires the buyer to fetch the
tokenURI from the blockchain in an untampered way.
A7: Retrieve(tokenURI→ asset). Some marketplaces also provide a central-
ized asset cache. By modifying the returned asset, the attacker is able to trick
the buyer into believing it is looking at a more valuable NFT than is actually

12 F. Stöger et al.

the case. Detecting this attack requires untampered access to the original asset
storage.
A8: Purchase({TID, ask, buyer} →). Two attacks involving interaction 3D
are possible. By modifying the TID, the attacker is able to trick the buyer into
purchasing a different, attacker-owned, asset. In addition to the parameters for
the Purchase call, the MS also provides a destination to where this function
should be sent. In concrete instantiations, this is the smart contract address of
the NFTM. By changing the destination of the Purchase function, the buyer is
tricked into sending the Purchase transaction to the attacker who is then able
to extract the ask amount.
A9: Bid({TID, bid, buyer} →). Some marketplaces such as foundation imple-
ment bidding protocols which require the buyer to deposit the bid amount al-
ready within Bid. Such bid protocols are susceptible to the same redirection
attack mentioned in A8.

If the Bid does not include a deposit, as is the case in OpenSea, the attacker
can modify bid to trick the buyer into bidding more in a hard to detect manner.
NFTMs using these bidding protocols enforce the winning bid by becoming del-
egatee of surrogate tokens for the native cryptocurrency. Concretely, in the case
of OpenSea and Rarible on Ethereum, if for example a bid is placed for 1ETH,
the buyer has to delegate the right over at least 1wETH, a tokenized version
of 1ETH, to the NFTM. This requires a call Delegate({TID, Mkt} →), the pa-
rameters for which are provided by the MS. Modifying the Mkt value causes the
attacker to become delegatee over these surrogate tokens.

4.4 Architecture Type IV: Centralized Ownership Registry

Unlike in the previous two architectures, here we only consider the case of cen-
tralized access and ignore a centralized ownership registry, as it contradicts the
core idea of NFTs being stored in a blockchain.
A10: Read(TID→ tokenURI). By modifying the tokenURI, an attacker is able
to trick the buyer into believing it is looking at a more valuable NFT than is
actually the case. This attack can be used to trick a buyer into buying a less
valuable NFT offered by the attacker for the price of a more valuable asset.

5 Attack Validation

We have validated our attacks with practical systems. The validation consists of
two major parts based on the centralized entities involved:

– Attacks involving a BaaS or IPFS gateway: A1, A2, A10
– Attacks involving a centralized NFTM: A3–A9

Setup. We use OpenSea as an NFTM with a centrally implemented market-
place; and use Ethereum’s Goerli testnet as a blockchain, which mimics the real
Ethereum mainnet and is used by OpenSea for testing purposes. Ethereum makes
up 76% of the total NFT sale volume across the top 10 blockchains. OpenSea is

Demystifying Web3 Centralization: The Case of Off-Chain NFT Hijacking 13

the largest NFTM accounting for 70% of the total NFT sale volume on Ethereum
across the top 15 marketplaces[2]. NFT trade on OpenSea accounts for roughly
53% of the entire sale volume. For the gateways to the blockchain and IPFS, we
use the Infura blockchain gateway and the official IPFS gateway. For the IPFS
pinning service, we use Pinata which offers a web interface for uploading files
into IPSF. Both the gateways and Pinata are considered industry-standard.

All the attacks are implemented in Python 3.7.9 and carried out on a laptop
running Firefox 102.0 and Metamask 10.14.7 on Ubuntu 20.04.4 LTS. To sim-
ulate the attacker, we install an CA certificate in Firefox’s trust store for the
impersonation capability and use mitmproxy 8.0.0 to hijack website connections.
This allows us to modify HTTPs requests and responses.

Ethical Consideration. Our experiments create smart contracts and NFTs
on a blockchain that is intended for testing purposes including security analysis.
They do not incur real monetary costs even if a user accidentally buys the tokens.
The test asset files we upload to IPFS disappear after some time when they are
not cached by any node, and so their impact to the network is minimal.

Our attacks do not exploit the systems of service providers themselves, but
rather architecture-level vulnerabilities induced by centralization and general
network-based attacks. Service providers often do not consider attacks requiring
man-in-the-middle (MITM) capabilities, which is our case, within their responsi-
bility. We submitted a report through OpenSea’s official bug bounty program [7]
and their reply confirms that our attacks are outside the program’s scope.

5.1 Attacks Involving a BaaS or IPFS Gateway

A gateway service exposes APIs for users to fetch data from a decentralized in-
frastructure without running nodes by themselves. We validate that it is possible
to intercept the connection and modify the data in our attacks.

Change the asset reference returned by a BaaS Gateway (A10). To
simulate the attack, we first created an NFT, of which its asset reference could
be returned by the tokenURI() function according to ERC-721. Then as the
user, we tried to get the asset reference by using a common tool curl to invoke
the function through the Infura blockchain gateway. Meanwhile, as the attacker,
we used mitmproxy to intercept the gateway’s response and managed to replace
the returned asset reference with an arbitrary string.

Modify the asset to or from an IPFS gateway (A1, A2). To simulate
the attack A1, as the user, we uploaded a file to IPFS through the IPFS pinning
service Pinata. Meanwhile, as the attacker, we used mitmproxy to intercept the
request and managed to change the file to be uploaded. For the attack A2, as
the user, we tried to browse the asset of an NFT via the official IPFS gateway.
Simultaneously, as the attacker, we used mitmproxy to intercept the gateway’s
response and managed to change the returned asset.

14 F. Stöger et al.

5.2 Attacks involving a Centralized Marketplace

We have identified two methods to attack a user’s interactions with an MS. First,
an attacker can hijack the connection between the MS and the user. This allows
direct modification of the information exchanged between the MS and the user.
Second, an attacker can hijack the connection between the user and a third-party
JavaScript provider of the MS. Most marketplace websites include third-party
scripts for example to enhance the user experience or for analytics purposes.
Unless a script is sandboxed within an iframe, it has access to the entire web
page and can perform virtually arbitrary modifications. We briefly discuss our
validated attacks below and leave further details to Appendix A.
Royalty payout address change (A3). To simulate the attack, as the user, we
tried to change the royalty payout address on the OpenSea website. Meanwhile,
as the attacker, we used mitmproxy to intercept the request and managed to set
the new royalty payout address to the attacker’s account.
Wrong data fetched from NFTM (A5, A6, A7). To simulate the attack A5,
as the buyer, we tried to browse the bids for an NFT on the OpenSea website.
Meanwhile, as the attacker, we used mitmproxy to intercept the buyer’s request
for fetching the bids from MS and managed to increase the price of the bids.
To validate the attack A6, as the buyer, we browsed an NFT on the OpenSea
website. At the same time, as the attacker, we used mitmproxy to intercept the
buyer’s request for fetching the NFT image from MS. We managed to change the
image URI in the request, causing the buyer to receive another NFT’s image.
Validating the attack A7 was the same except that as the attacker, we intercepted
the MS’s response to the buyer with mitmproxy and changed the returned image.
Change order or transaction parameters (A4, A8, A9). To simluate the
attack A4, as the seller, we listed an NFT for sale via the OpenSea website. In the
first case that the seller lists an NFT from a smart contract new to the NFTM,
the MS asked us to send a transaction that approves the NFTM smart contract
to transfer the NFT. As the attacker, by using the malicious JavaScript injected
to the seller’s webpage, we mananged to replace the account to be approved
with the attacker’s account. In the other case, we used mitmproxy to intercept
the seller’s request for listing the NFT. We managed to make the NFT be sold
cheaper by decreasing the selling price in the request.

For the attack A8 and A9, we mimicked a buyer that buys an NFT via
purchase and bidding on the Opensea website respectively. In the purchase case
(A8), as the buyer, we were required by the MS to send a transaction that
invokes the NFTM smart contract to finish the purchase. As the attacker, we used
mitmproxy to intercept the buyer’s request and managed to set another NFT as
the one to buy. We were also able to intercept the NFTM’s response and changed
the transaction destination address, causing the buyer to call a malicious contract
that stole all the ETH attached to the transaction. Changing the destination
address causes minor visual changes in MetaMask, as seen in Fig. 3. Crucially,
MetaMask still shows that the transaction is associated with OpenSea. For the
bidding case (A9), as the attacker, we similarly used mitmproxy and managed to

Demystifying Web3 Centralization: The Case of Off-Chain NFT Hijacking 15

(a) Untampered transaction (b) Tampered transaction

Fig. 3: Screenshots of MetaMask showing a genuine and a fradulent transaction.
The latter claims to be from the NFTM and has the correct function name.
Signing this transaction causes 1 ETH sent to the attacker.

make the buyer bid for another NFT or bid more. In addition, for a buyer that has
not approved the NFTM smart contract to transfer its ERC20 tokens before, we
were able to apply the same trick in the attack A4 to give the attacker’s account
the transfer right.

6 Measurements

In this section, we first investigate the MSes hosted by the top ten NFTMs3 and
their susceptibility to BGP hijacks. Then, we analyze CIs’ susceptibility to such
attacks. Finally, we discuss the prevalence of route origin validation (ROV) in
ASes serving NFTM users.

To investigate the susceptibility to routing attacks, we check the IP prefixes
from which the MSes and CIs originate. A detailed analysis of IP prefixes is
possible using RIPEstat, a tool provided by RIPE, which for an IP provides the
announced IP prefix, source AS, route origin attestation (ROA), in addition to
other metrics. We specifically investigate the service providers’ susceptibility to
BGP subprefix hijacking, a very effective form of BGP hijacking. We consider
an IP prefix vulnerable to a subprefix hijack if: (i) no valid ROA exists and
prefix length is less than 24, (ii) valid ROA exists but max-length field in ROA
is stricly larger than prefix length and prefix length is less than 24.

The results of our analysis on the susceptibility of NFTMs is displayed in
Table 2. One of the top ten NFTMs, Golom, has its MS originate in an IP pre-
fix susceptible to subprefix hijacking. Five of the top ten marketplaces however
3 According to https://dappradar.com

https://dappradar.com

16 F. Stöger et al.

Table 2: NFTMs’ susceptibility to prefix hijack attack. “Decentralized” archi-
tecture allow trading without MS interaction. MSes loading JavaScript from
JavaScript providers vulnerable to subprefix hijacking are marked as “JS.” An
aggregator NFTM collects sell order from other NFTMs. Its security thus de-
pends on the security of the queried NFTMs.

NFTM Architecture Interception
Possible

Vulnerable JS
Provider Vulnerability

OpenSea MS, off-chain No - -
DecentralizedCryptoPunks MS, on-chain No - -

LooksRare MS, off-chain JS cdn.jsdelivr.net Max-Len
X2Y2 - No
Rarible MS, off-chain JS static.klaviyo.com No ROA

DecentralizedSuperRare Central MS JS cdn.heapanalytics.com Max-Len

DecentralizedFoundation MS, on-chain JS cdn.segment.com Max-Len

Decentraland - JS cdn.segment.com Max-Len
Element Aggregator No
Golom - Yes/JS Max-Len

included JavaScript from a JavaScript provider originating from such a vulner-
able IP prefix. Thus, five of the top ten NFTMs are likely vulnerable to the
JavaScript-based versions of our attacks. We were also able to identify several
popular IPFS gateways4 to be vulnerable to subprefix hijacks. Infura, a popular
BaaS provider used by many Web3 applications and wallets such as MetaMask,
has also been found to be vulnerable. Table 3 summarizes the vulnerable CIs.

Even if service providers themselves are not vulnerable to network attacks, as
long as an attacker can obtain a fraudulent certificate for a service provider, and
a user locates in a vulnerable AS or uses a DNS resolver located in a vulnerable
AS, then our attacks can still be launched. Many practical CAs are still subject
to network attacks [13,20] and therefore can be tricked to issue fraudulent cer-
tificates for arbitrary domains. Moreover, many ASes still do not enable ROV
properly. For example, British Telecom, the largest cable provider in the UK
with over 33% marketshare, does not perform ROV [44]. Similarly, Bell Canada
and Rogers, two of the largest ISPs in Canada, have not implemented, or are just
in the process of implementing ROV. None of the three main ISPs in Austria,
A1, Hutchinson Drei, and Magenta, implement ROV [5]. To sum up, our attacks
can affect a large number of users across the Internet.

4 According to https://ipfs.github.io/public-gateway-checker/

https://ipfs.github.io/public-gateway-checker/

Demystifying Web3 Centralization: The Case of Off-Chain NFT Hijacking 17

Table 3: CIs’ susceptibility to prefix hijack attack
Centralized service Vulnerable AS Reason

IPFS Gateways
4everland.io AS16509 Max-Len
hardbin.com AS14061 Max-Len
ipfs.eth.aragon.network AS24940 Max-Len
jorropo.net AS14061 No ROA
ipfs.runfission.com AS14618 Max-Len

BaaS Gateways
mainnet.infura.io AS14618 Max-Len

7 Conclusion

This paper makes the first step in uncovering the security risks of centraliza-
tion in the booming Web3 ecosystem. We focus on players around NFTs, one of
the ecosystem’s most important parts, and perform a systematic study of the
architecture-level vulnerabilities induced by centralized entities. Our results con-
firm that centralization increases the overall attack surface by a wide margin.
This is worrisome given the practicality and variety of the attacks, and the large
financial investments in NFTs. We hope that our work will raise more awareness
about the harm of centralization in the Web3 community.

References

1. Compound. https://compound.finance/. Accessed on 10.10.2022.
2. Dappradar. https://dappradar.com/nft/marketplaces/protocol/ethereum.

Accessed 26/07/2022.
3. Infura. https://www.infura.io/.
4. Ipfs: Interplanetary file system. https://ipfs.tech.
5. Is bgp safe yet? https://isbgpsafeyet.com/. Accessed 19/10/2022.
6. List of nft marketplaces. https://dappradar.com/nft/marketplaces.
7. Opensea bug bounty program. https://hackerone.com/opensea.
8. Uniswap. https://uniswap.org/. Accessed on 10.10.2022.
9. Anders, Lance, and Shrug. Eip-4907: Rental nft, an extension of eip-721. Available:

https://eips.ethereum.org/EIPS/eip-4907, March 2022.
10. Maria Apostolaki, Aviv Zohar, and Laurent Vanbever. Hijacking bitcoin: Routing

attacks on cryptocurrencies. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P), 2017.

11. Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on
ethereum smart contracts sok. In Proceedings of the 6th International Conference
on Principles of Security and Trust - Volume 10204, 2017.

12. Juan Benet. Ipfs - content addressed, versioned, p2p file system (draft 3).
https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/
ipfs.draft3.pdf.

https://compound.finance/
https://dappradar.com/nft/marketplaces/protocol/ethereum
https://www.infura.io/
https://ipfs.tech
https://isbgpsafeyet.com/
https://dappradar.com/nft/marketplaces
https://hackerone.com/opensea
https://uniswap.org/
https://eips.ethereum.org/EIPS/eip-4907
https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.draft3.pdf
https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.draft3.pdf

18 F. Stöger et al.

13. Henry Birge-Lee, Yixin Sun, Anne Edmundson, Jennifer Rexford, and Prateek Mit-
tal. Bamboozling certificate authorities with bgp. In Proceedings of the USENIX
Security Symposium, 2018.

14. Laurent Chuat, Markus Legner, David Basin, David Hausheer, Samuel Hitz, Peter
Müller, and Adrian Perrig. RHINE: Secure and Reliable Internet Naming Service,
pages 431–459. Springer International Publishing, Cham, 2022.

15. Catalin Cimpanu. Dns hijacks at two cryptocurrency sites
point the finger at godaddy, again. https://therecord.media/
two-cryptocurrency-portals-are-experiencing-a-dns-hijack-at-the-same-time/.
Accessed 01/10/2022.

16. Catalin Cimpanu. Klayswap crypto users lose funds after bgp hijack. https:
//therecord.media/klayswap-crypto-users-lose-funds-after-bgp-hijack/.
Accessed 01/10/2022.

17. Mauro Conti, E. Sandeep Kumar, Chhagan Lal, and Sushmita Ruj. A survey on
security and privacy issues of bitcoin. IEEE Communications Surveys Tutorials,
20(4):3416–3452, 2018.

18. Tianxiang Dai, Philipp Jeitner, Haya Shulman, and Michael Waidner. From ip to
transport and beyond: Cross-layer attacks against applications. In Proceedings of
the ACM SIGCOMM Conference, 2021.

19. Tianxiang Dai, Philipp Jeitner, Haya Shulman, and Michael Waidner. The hijack-
ers guide to the galaxy: Off-path taking over internet resources. 2021.

20. Tianxiang Dai, Haya Shulman, and Michael Waidner. Let’s downgrade let’s en-
crypt. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’21, page 1421–1440, New York, NY, USA, 2021.
Association for Computing Machinery.

21. Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov,
Lorenz Breidenbach, and Ari Juels. Flash boys 2.0: Frontrunning in decentralized
exchanges, miner extractable value, and consensus instability. In Proceedings of
the IEEE Symposium on Security and Privacy (S&P), 2020.

22. Dipanjan Das, Priyanka Bose, Nicola Ruaro, Christopher Kruegel, and Giovanni
Vigna. Understanding security issues in the nft ecosystem. In Proceedings of the
ACM Conference on Computer and Communications Security (CCS), 2022.

23. Parinya Ekparinya, Vincent Gramoli, and Guillaume Jourjon. Impact of man-
in-the-middle attacks on ethereum. In 2018 IEEE 37th Symposium on Reliable
Distributed Systems (SRDS), 2018.

24. William Entriken, Dieter Shirley, Jacob Evans, and Nastassia Sachs. Eip-721: Non-
fungible token standard. Available: https://eips.ethereum.org/EIPS/eip-721,
January 2018.

25. Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulner-
able. Communications of the ACM, 61(7):95–102, 2018.

26. DAN GOODIN. How 3 hours of inaction from amazon cost cryptocurrency hold-
ers $235,000. https://arstechnica.com/information-technology/2022/09/
how-3-hours-of-inaction-from-amazon-cost-cryptocurrency-holders-235000/.
Accessed 01/10/2022.

27. James Grimmelmann, Yan Ji, and Tyler Kell. Eip-5218: Nft rights management.
Available: https://eips.ethereum.org/EIPS/eip-5218, July 2022.

28. Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse at-
tacks on bitcoin’s peer-to-peer network. In Proceedings of the USENIX Security
Symposium, 2015.

https://therecord.media/two-cryptocurrency-portals-are-experiencing-a-dns-hijack-at-the-same-time/
https://therecord.media/two-cryptocurrency-portals-are-experiencing-a-dns-hijack-at-the-same-time/
https://therecord.media/klayswap-crypto-users-lose-funds-after-bgp-hijack/
https://therecord.media/klayswap-crypto-users-lose-funds-after-bgp-hijack/
https://eips.ethereum.org/EIPS/eip-721
https://arstechnica.com/information-technology/2022/09/how-3-hours-of-inaction-from-amazon-cost-cryptocurrency-holders-235000/
https://arstechnica.com/information-technology/2022/09/how-3-hours-of-inaction-from-amazon-cost-cryptocurrency-holders-235000/
https://eips.ethereum.org/EIPS/eip-5218

Demystifying Web3 Centralization: The Case of Off-Chain NFT Hijacking 19

29. Bo Jiang, Ye Liu, and Wing Kwong Chan. Contractfuzzer: Fuzzing smart con-
tracts for vulnerability detection. In Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2018.

30. David Johnston, Sam Onat Yilmaz, Jeremy Kandah, Nikos Benteni-
tis, Farzad Hashemi, Ron Gross, Shawn Wilkinson, and Steven Mason.
Thegeneraltheoryofdecen-tralizedapplications, dapps. 2014.

31. Kacherginsky. Celer bridge incident analysis. https://www.coinbase.com/blog/
celer-bridge-incident-analysis, September 2022. Accessed 28/09/2022.

32. Arnav Kapoor, Dipanwita Guhathakurta, Mehul Mathur, Rupanshu Yadav, Man-
ish Gupta, and Ponnurungam Kumaraguru. Tweetboost: Influence of social media
on nft valuation. In Proceedings of WWW, 2022.

33. Johannes Krupp and Christian Rossow. teEther: Gnawing at ethereum to auto-
matically exploit smart contracts. In 27th USENIX Security Symposium (USENIX
Security 18), 2018.

34. Kai Li, Jiaqi Chen, Xianghong Liu, Yuzhe Richard Tang, XiaoFeng Wang, and
Xiapu Luo. As strong as its weakest link: How to break blockchain dapps at rpc
service. In Proceedings of the Symposium on Network and Distributed Systems
Security (NDSS), 2021.

35. Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. Mak-
ing smart contracts smarter. In Proceedings of the ACM Conference on Computer
and Communications Security (CCS), 2016.

36. Shaurya Malwa. Two polygon, fantom front ends hit by
dns attack. https://www.coindesk.com/tech/2022/07/01/
two-polygon-fantom-front-ends-hit-by-dns-attack/. Accessed 01/10/2022.

37. Moxie Marlinspike. My first impressions of web3. https://moxie.org/2022/01/
07/web3-first-impressions.html, January 2022. Accessed 01.10.2022.

38. Christopher Natoli and Vincent Gramoli. The balance attack or why forkable
blockchains are ill-suited for consortium. In Proceedings of the IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks (DSN), 2017.

39. Till Neudecker and Hannes Hartenstein. Network layer aspects of permissionless
blockchains. IEEE Communications Surveys Tutorials, 21(1):838–857, 2019.

40. Daniel Perez and Benjamin Livshits. Broken metre: Attacking resource metering
in EVM. In Proceedings of the Symposium on Network and Distributed Systems
Security (NDSS), 2020.

41. Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-Cohen, and
Martin Vechev. Verx: Safety verification of smart contracts. In Proceedings of the
IEEE Symposium on Security and Privacy (S&P), 2020.

42. Witek Radomski, Andrew Cooke, Philippe Castonguay, James Therien, Eric Binet,
and Ronan Sandford. Eip-1155: Multi token standard. Available: https://eips.
ethereum.org/EIPS/eip-1155, June 2018.

43. Caspar Schwarz-Schilling, Joachim Neu, Barnabé Monnot, Aditya Asgaonkar,
Ertem Nusret Tas, and David Tse. Three attacks on proof-of-stake ethereum.
In Proceedings of Financial Cryptography and Data Security (FC), 2022.

44. Statista. Market share of telecommunications operators in the united kingdom (uk)
from 2007 to 2021, by fixed broadband subscribers. https://www.statista.com/
statistics/607716/worldwide-artificial-intelligence-market-revenues/,
2022. Accessed 19/10/2022.

45. Liya Su, Xinyue Shen, Xiangyu Du, Xiaojing Liao, XiaoFeng Wang, Luyi Xing, and
Baoxu Liu. Evil under the sun: Understanding and discovering attacks on ethereum
decentralized applications. In Proceedings of the USENIX Security Symposium,
2021.

https://www.coinbase.com/blog/celer-bridge-incident-analysis
https://www.coinbase.com/blog/celer-bridge-incident-analysis
https://www.coindesk.com/tech/2022/07/01/two-polygon-fantom-front-ends-hit-by-dns-attack/
https://www.coindesk.com/tech/2022/07/01/two-polygon-fantom-front-ends-hit-by-dns-attack/
https://moxie.org/2022/01/07/web3-first-impressions.html
https://moxie.org/2022/01/07/web3-first-impressions.html
https://eips.ethereum.org/EIPS/eip-1155
https://eips.ethereum.org/EIPS/eip-1155
https://www.statista.com/statistics/607716/worldwide-artificial-intelligence-market-revenues/
https://www.statista.com/statistics/607716/worldwide-artificial-intelligence-market-revenues/

20 F. Stöger et al.

"id": "CollectionCreateOrUpdatePageEditMutation",
"query": "...",
"creatorFees": [

{ // address to be set to the attacker's account
"address": "0x9e9675b276a3695163b230fb14cd6decf2364497",
"basisPoints": 1000

}
]

Listing 1: Selected parameters in the request for changing royalty payout address

46. Verified Market Research (VMR). Non-fungible tokens market size and forecast.
Technical report, 2022.

47. Dabao Wang, Hang Feng, Siwei Wu, Yajin Zhou, Lei Wu, and Xingliang Yuan.
Penny wise and pound foolish: Quantifying the risk of unlimited approval of ERC20
tokens on ethereum. In Proceedings of the International Symposium on Research
in Attacks, Intrusions and Defenses (RAID), 2022.

48. Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V Le, and Arthur Gervais.
High-frequency trading on decentralized on-chain exchanges. In Proceedings of the
IEEE Symposium on Security and Privacy (S&P), 2021.

A Attacks Involving a Centralized Marketplace

Royalty payout address change (A3). To simulate the attack, as the user,
we tried to change the royalty payout address on OpenSea. After we entered
the new payout address and confirmed the change, the browser sent a request,
i.e. a GraphQL query to the MS. The request was to set the new royalty payout
address according to the query parameter address shown in Listing 1. Meanwhile,
as the attacker, we used mitmproxy to intercept the request and set the paramter
address to the attacker’s account. Then the royalty payout address was changed
accordingly.
Wrong data fetched from NFTM (A5, A6, A7). To simulate the attack
A5, as the buyer, we tried to browse the bids for an NFT on OpenSea. For
simplicity, we only considered one bid. To fetch the bid, the browser sent a
request, i.e. a GraphQL query to the MS. In the MS’s response to the query, the
parameter perUnitPriceType specifies the bid’s price. As the attacker, we used
mitmproxy to intercept the MS’s response. We made each field of the parameter
perUnitPriceType larger, causing the buyer to see a bid with a higher price.

For the attack A6, as the buyer, we browsed an NFT on OpenSea. The
browser fetched the NFT image from a central source :i.seadn.io/gae/<asset
identifier>, where the asset identifier refers to the identifier of the NFT image.
As the attacker, we used mitmproxy to intercept the request before it reached
MS. We changed the asset identifier to that of another NFT, causing the buyer

Demystifying Web3 Centralization: The Case of Off-Chain NFT Hijacking 21

"maker": "...",
"taker": "...",
"perUnitPriceType": {

// each field to be set to a larger value
"eth": "0.0225",
"usd": "29.242800000000003",
"unit": "0.0225"

}

Listing 2: Selected parameters in the response for fetching existing bids

"id": "CreateListingActionModalQuery",
"query": "...",
"price": {

"paymentAsset": "...",
"amount": "1" // to be set to a larger value

},
"recipient": null // to be set to the attacker's account

Listing 3: Selected parameters in the request for listing an NFT for sale

to receive the wrong image. The attack A7 was validated in the same except
that as the attacker, we used mitmproxy to intercept the MS’s response and
directly changed the image to be received by the buyer. As a result, the buyer
may wrongly believe to inspect a highly valuable NFT sold for a cheap price.
This attack is distinct from counterfeit NFTs which just copy assets of expensive
NFTs because, unlike for counterfeits, the contract address displayed on OpenSea
is still that of the genuine NFT collection.

Change order or transaction data (A4, A8, A9). To simluate the attack
A4, as the seller, we listed an NFT for sale via OpenSea. In the first case that the
seller lists an NFT from a smart contract new to the NFTM, after we clicked the
button for completing listing, we were required to send a Delegate transaction
that approves the NFTM smart contract to transfer the NFT. The transaction
parameters were supposed to be fetched from the MS with the browser sending a
request i.e. a GraphQL query to the MS. As the attacker, we used the malicious
JS injected into the seller’s web page to bind another function to the button. The
seller was still required to send a transaction but the transaction parameters were
provided by us. The attacker’s account was instead approved for the transfer.

In the other case that the seller lists an NFT from a smart contract known
to the NFTM, the step for approval is skipped. We were directly required to
create a sell order, which would be stored on the MS and used when a buyer
purchases the NFT. For this, the browser first sent a request, i.e. a GraphQL
query to the MS. This request contained the parameter amount and recipient

22 F. Stöger et al.

"source": null,
"destination": {

// to be set to the address of the malicious smart contract
"value": "0x2722E1ADC11760A4C9Cca21d6311C55d5e6ABc45"

},
"value": "200000000000000",
"data": "..."

Listing 4: Selected parameters in the response for purchasing an NFT

"id": "BulkPurchaseActionModalQuery",
"query": "...",
"ordersToFill": [

{ // order to be set to the sell order of another NFT
"order": "T3JkZXJWMlR5cGU6ODQ5NDkz",
"itemFillAmount": "1"

}
]

Listing 5: Selected parameters in the request for purchasing an NFT

which specify the price and the intended buyer respectively as shown in Listing
3. The MS replied with the order information for the seller to create the order.
As the attacker, we used mitmproxy to intercept the seller’s request and changed
the parameter amount and recipient to a lower value and the attacker’s account
respectively. Then only we could buy the NFT on OpenSea, and we managed to
buy it at a cheaper price.

For the attack A8 and A9, we mimicked a buyer that buys an NFT via pur-
chase and bidding on OpenSea respectively. In the purchase case (A8), as the
buyer, we were required to send a transaction that invokes the NFTM smart con-
tract to finish the purchase. For this, the browser sent a request, i.e. a GraphQL
to the MS. The parameter order in the request specifies the sell order identifier
of the NFT as shown in Listing 5. The MS replied with transaction parameters
for the buyer to create the transaction. The parameter value inside destination
specifies the transaction destination address. As the attacker, when we chose to
intercept the request, we changed the parameter order to that of another NFT,
causing the buyer to buy another one. When we chose to intercept the response,
we changed the parameter value to the address of a malicious smart contract,
stealing the ETH that the buyer attached to the transaction.

In the bidding case (A9), we were required to create a buy order. The browser
sent a request, i.e. a GraphQL to the MS for getting the parameters to create the
order. As the attacker, we used mitmproxy to intercept the request. As shown
in Listing 6, on our first try, we changed the parameter asset to that of another
NFT, causing the buyer to bid another NFT; on our second try, we changed the

Demystifying Web3 Centralization: The Case of Off-Chain NFT Hijacking 23

"id": "CreateOfferActionModalQuery",
"query": "...",
"item": { // asset to be set to that of another NFT

"asset": "QXNzZXRUeXBlOjEzODk5MjU5NQ==",
"quantity": "1"

},
"price": {

"paymentAsset": "UGF5bWVudEFzc2V0VHlwZTo0NA==",
"amount": "0.0003" // to be set to a larger value

}

Listing 6: Selected parameters in the request for bidding an NFT

parameter amount to a larger value, causing the buyer to bid more. Furthermore,
for bidding on OpenSea, a buyer is required to use ERC20 tokens. If a buyer
does not approve the NFTM smart contract to transfer its ERC20 tokens before,
the buyer is required to sent a transaction for the approval. As the attacker, like
what we did in A4, we managed to gain the transfer right by using the malicious
JS injected into the buyer’s webpage.

B Attack Mitigation

Secure Internet Routing. Our attacks exploit known vulnerabilities of to-
day’s Internet to attack Web3. Secure inter-domain routing protocols such as
SCION [14] can be used in place of the vulnerable BGP to protect against prefix
hijacking attacks.
Application Layer Authentication. To protect against attacks targeting
transaction parameters sent by the MS to the user, the wallet can establish
shared keys with the server without relying on the web PKI but instead on the
NFTM’s blockchain public key. Blockchain keys are tied on an entity’s identity
and are only seldomly changed. It is thus reasonable to bake a list of public
keys into the wallet to enable marketplace authentication. When a user visits
the marketplace, a handshake between the wallet and the MS is performed. The
resulting keys allow efficient authentication of transaction parameters. Crypto-
graphic keys are meant to only be used for a single purpose, so great care has
to be given to not introduce further attacks by using a blockchain keypair also
for key exchange.
Improving User Interface. Wallets such as Metamask do not effectively dis-
play transaction information. Improving the interface with clearer representa-
tions and explanations can help users identify potential attacks and enhance the
security of NFT transactions.

	Demystifying Web3 Centralization: The Case of Off-Chain NFT Hijacking

