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Abstract. While the integrity of digital data can be ensured via digital
signatures, ensuring the integrity of physical data, i.e., objects, is a more
challenging task. For example, constructing a digital signature on data
extracted from an object does not necessarily guarantee that an adver-
sary has not tampered with the object or replaced this with a cleverly
constructed counterfeit. This paper proposes a new concept called signa-
tures for objects to guarantee the integrity of objects cryptographically.
We first need to consider a mechanism that allows us to mathemati-
cally treat objects which exist in the physical world. Thus, we define a
model called an object setting in which we define physical actions, such
as a way to extract data from objects and test whether two objects are
identical. Modeling these physical actions via oracle access enables us
to naturally enhance probabilistic polynomial-time algorithms to algo-
rithms having access to objects — we denote these physically enhanced
algorithms (PEAs). Based on the above formalization, we introduce two
security definitions for adversaries modeled as PEAs. The first is unforge-
ability, which is the natural extension of EUF-CMA security, meaning
that any adversary cannot forge a signature for objects. The second is
confidentiality, which is a privacy notion, meaning that signatures do
not leak any information about signed objects. With these definitions
in hand, we show two generic constructions: one satisfies unforgeability
by signing extracted data from objects; the other satisfies unforgeability
and confidentiality by combining a digital signature with obfuscation.



1 Introduction

Cryptography provides a formal ground to authenticate and secure digital data.
For instance, by using a signature scheme to sign a (digital) message, the verifier
can detect fraudulent activities such as message injections and impersonation
attacks, while further providing a mechanism to hold the signer accountable for
the message.

On the other hand, authenticating physical data (or what we simply call
objects) are much more challenging. Consider a hardware vendor shipping a mi-
crochip to a client. While the client may hold a digital receipt of the transaction,
this does not prevent an adversary from substituting the product from a counter-
feit. Unless the counterfeit is obviously non-functional, it would be difficult for
an average consumer to detect the authenticity of the received product. More-
over, even if the product was non-functional, the client would not know if it was
an inferior vendor or if a substitution attack occurred since the sender of the
product cannot be held accountable by cryptographic means.

The inability to authenticate objects has had a grave economic impact. This
is exacerbated by the globalization of supply chains: since each component of
a product can be made in different regions and countries, protecting against
substitution attacks becomes increasingly difficult. The OECD and the EU’s In-
tellectual Property Office report that 3.3% of global trade, which amounts to
509 Billion USD, is counterfeit or pirated goods [22] out of which the market for
counterfeit electronic is 169 Billion USD according to Havocscope [1]. In 2019,
the United States Department of Homeland Security reports the estimated man-
ufacture’s suggested retail price (MSRP) for seized electronic goods to be 106
Billion USD [28]. The amount of damage could be amplified if we consider indi-
rect consequences of such counterfeit electronics. For example, a tiny microchip
was injected in the server’s motherboard of Elemental during manufacturing [26];
the server was obliviously used by the Department of Defense data centers, the
CIA’s drone operations, and the onboard networks of Navy warships.

While various countermeasures are taken by companies and state actors to
digitally and physically secure the global supply chains, there is still much to
be improved. In the above example, once a counterfeit makes it into the supply
chain and received by a consumer, it seems difficult to detect such substitution
within the current systems. An ambitious goal would be to cryptographically
secure the supply chains by authenticating objects as we do digital data. In
other words, can we use cryptography to formally prove that it is difficult for
adversaries to modify an object without being detected, while further holding
the sender of an object accountable? This is the question we tackle in this work.

1.1 Owur Contribution

In this work, we lay the foundation of digitally authenticating objects (i.e., phys-
ical data) and propose a new concept called signatures for objects (SfO). The
combination of a SfO and a standard signature for digital data brings us one
step closer to the sought-after goal of cryptographically securing the entire global



supply chain: any injection of forged objects and digital data become detectable
and the original signer (i.e., sender) of these objects and digital data can be held
accountable.

Concretely, we first introduce new tools to formally handle objects in a cryp-
tographically sound manner. To give an idea, an object exists in the physi-
cal world while a signature produced by a Turing machine (or a probabilistic
polynomial-time (PPT) algorithm) exists in the digital world. Therefore, at the
minimum, there needs to be a mechanism to translate objects into digital data
which a Turing machine can operate on. While there have been several research
aiming to bridge the digital world and the physical world (e.g., [T4)23I30]) , we
are the first to formalize physically-enhanced algorithms (PEA) — a new compu-
tational model that enhances standard PPT algorithms by physical properties.

With PEA formalized, we define a signature of objects with an intuitive
unforgeability security notion analogous to standard digital signatures. That is,
(informally) an adversary should not be able to forge a signature on an object
that has not been signed before. We then provide a simple and efficient generic
construction based on any standard signature scheme. We further explore a
potentially relevant security notion of confidentiality — again analogous to those
considered for standard signature schemes [7] — and construct an SfO scheme
satisfying this security notion based on obfuscation [2J3]. We elaborate on our
contributions below.

How to Treat Objects. To treat physical object in a cryptographically sound
manner, we need to answer the following fundamental questions: (A) how to
capture objects in a well-defined way, (B) how to translate objects into digital
data, and (C) how to enhance the definition of PPT algorithms to handle objects.
Answering these questions will be the main theoretical contribution of our work.

We first define an object setting to answer questions (A) and (B). Informally,
an object setting is defined with respect to a relation function and a sensing
function. At a high level, the (possibly non-efficient) relation function decides
whether two objects are the same, e.g., two laptops may be considered the same
object if they are the same model, or they may be considered different with
different MAC addresses for each individual. A sensing function on the other
hand takes an object as input and outputs a digital digest of the object. For
instance, a sensing function could be a photograph of an object along with its
weight, size, and color. The concrete definition of an object setting is necessarily
application dependent.

We then define physically-enhanced algorithms (PEAs) to answer question (C).
A PEA should capture all the intuitive and natural capability of an algorithm
having access to an object. Continuing with the above example, given a laptop,
we can consider taking some pieces out from the laptop. Formally, we capture
these capabilities by enhancing the definition of a PPT algorithm by further
giving it oracle access that embeds an object. For instance, a PPT algorithm
can query a bit string that represents, say “open a laptop”, to the oracle and the
oracle will modify the embedded laptop accordingly. Importantly, only giving
handles to objects and not the object itself is what allows to naturally enhance



PPT algorithms to PEAs. We also introduce a sub-class of PEAs that we call
sensing algorithms, whose only physical action is to use the sensing function.
More details are provided in Section With object settings and PEAs for-
mally defined, we are ready to modify standard cryptographic primitives defined
against PPT algorithms to PEAs.

How to Sign Physical Data: Signature for Objects. In this work, we pro-
pose a new cryptographic primitive called signature for objects (SfO). At a high
level, it is defined analogously to standard digital signatures, where the differ-
ence is that signing and verification is done with respect to objects. To formally
define such an idea, we rely on an object setting, PEAs, and sensing algorithms
as defined above. Specifically, the signing algorithm of a SfO is a sensing algo-
rithm, instead of the usual PPT algorithm, which has oracle access to a sensing
function: given an object, the signing algorithm can query the sensing function
to obtain a digital digest of the object and finally outputs a digital signature[]
The verification algorithm, which is also a sensing algorithm, is defined similarly.
It takes a digital signature along with an object as input and verifies the validity
of the signature.

Correctness of SfO is defined using the relation function defined above. If the
two objects that the signing and verification algorithms take as input are iden-
tical under the relation function, then the signature should verify. In particular,
unlike digital data where equivalence is easy to check (i.e., check if the bit strings
are identical), we require relation functions to check equivalence of objects.

Security of SfO is captured by existential unforgeability under chosen-object
attacks (EUF-COA security), which is analogous to existential unforgeability
against chosen-message attacks (EUF-CMA) for an ordinary digital signature
scheme. The adversary is a PEA and we allow it to query for signatures on
different objects. However, the definition requires subtle care since we cannot
allow the adversary to query arbitrary objects. For instance, we can consider an
adversary that queries a device solving factorization in polynomial time. While
such a pathological adversary can break any cryptographic scheme based on the
hardness of factorization, it does not appropriately capture a practical adversary.
To remove these pathological adversaries, we restrict the adversary so that it can
obtain signatures on objects that can be obtained by performing some action
(e.g., turning in some other direction, heating it up) on the challenge object.
Specifically, the adversary can only perform actions on the challenge object by
means of oracle calls, where the set of allowed actions will be defined by the
object setting. In reality, this reflects the intuition that a counterfeit can be
created through modifying the original product.

Finally, once all the definitions of a SfO are formalized, the construction of a
SfO is simple and intuitive. We provide an efficient generic construction of an SfO
signature scheme that satisfies EUF-COA security, based on any standard digital

" Recall that the input and output of a sensing algorithm are the same as PPT. The
only difference is that it also has oracle access to sensing functions, which allows to
indirectly operate on objects.



signature scheme. See Section [3.2] for the definition of sensing algorithms and
PEAs, Section [3.3|for the definitions for SfO, and Section [3.4]for the construction.

Adding Confidentiality. In some applications of SfO, it is possible that the
signature on a particular object gets leaked to the public. If the object being
signed is sensitive, e.g., an unpublicized hardware, then we would like the signa-
ture to leak no information of the object.

To this end, we consider an additional security notion for SfO called confiden-
tiality under chosen-object attacks (Conf-COA security). This is a simulation-
based security definition, similar to the semantic security of public-key encryp-
tion [12] and virtual black-box security of obfuscation [2I3]. Informally, we say
that a SfO scheme is Conf-COA secure if for any PEA adversary A that, given a
signature of some object, tries to guess some information about the data of object
being signed, there exists a PEA simulator S that can succeed the guess without
seeing the signature. We then show a generic construction and instantiation of
an EUF- and Conf-COA secure scheme by combining a standard signature and
an obfuscation. See Section M for the details.

1.2 Related Works

Relationship to Existing Digital Signature Schemes. Some existing works con-
sidered confidentiality for standard signature schemes [79]. In our setting, data
to be signed is fuzzy (i.e., sensing outputs can be different every time), so there
are challenges in applying these technologies to our model. There also exist some
works that use fuzzy data for creating signing keys [T931133]. However, we sign
on fuzzy data rather than generating signing keys from it, so our model is or-
thogonal to theirs.

Relationship to FExisting Physical Cryptographic Protocols. Some works proposed
cryptographic protocols that consider physical actions (e.g., position based cryp-
tography [6], physical zero-knowledge [8], card-based cryptography [20]). These
works construct protocols using physical information, but they do not formalize
physical things in a cryptographically sound manner. Another related work by
Ishai et al. [14] studied sensing as a cryptographic function. We again note that
we are the first to formalize physical actions cryptographically.

Implementation of Sensing and Identification of Objects. To realize a signa-
ture for objects scheme, we need to implement a sensing function which al-
lows us to extract data from objects (e.g., photographic images) with which
we can identify objects. We can use object detection/recognition tools as sens-
ing, which have been proposed since the recent progress of machine learning
(e.g., [IBIT7AR2425]). Another candidate technique to realize sensing and iden-
tification of objects is via a physically unclonable function (PUF) [T1123]. (See
the paragraph Ezamples. in Section )



Supply Chain Security. There has been much interest in supply chain security.
Lee et al. [I6] showed that a safer supply chain could be achieved at a lower
cost by re-designing appropriate management and operational design using in-
formation technology. In recent years, research has been conducted using the
latest technologies, such as blockchain (e.g., [I5I21127]) and machine learning
(e.g., [MI29132]), to configure more secure supply chains. However, discussions of
security in these studies are heuristic and typically there are no formal security
models and/or proofs.

2 Preliminaries

In this section, we review basic notation and existing cryptographic notions used
in this paper.

Basic Notation. N, Z, and R denote the sets of all natural numbers, integers,
and real numbers, respectively. For n € N, we define [n] := {1,...,n}. For a set

S, |S| denotes its size. For two strings = and y, (= L y) is defined to be 1 if
x = y and 0 otherwise. For a probabilistic algorithm A, we write = + A(y) to
mean that A on input y outputs x, and when we need to make the randomness
r used by A explicit, we write x < A(y;r) (in which case the computation of A
is deterministic with respect to the inputs y and r). We say that a non-negative
function f : N — R is negligible if for all ¢ € N there exists Ag € N such that
FA) <A ¢ forall A > A\g. “negl” denotes an unspecified negligible function, and
“poly” denotes an unspecified positive polynomial. PPT stands for probabilistic
polynomial-time.

2.1 Digital Signature

Here we briefly recall the definition of an ordinary digital signature scheme. A
digital signature scheme DS consists of the following three PPT algorithms.

DS.KG(1*) — (vk,sk): This is the key generation algorithm, which takes the
security parameter 1* as input, and outputs a verification/signing key pair
(vk, sk).

DS.Sign(sk,m) — o: This is the algorithm for generating a signature, which
takes a signing key sk and a message m as input, and outputs a signature o.

DS.Ver(vk,m, o) — 1/0: This is the algorithm for verifying a signature, which
takes a verification key vk, a message m, and a signature o as input, and
outputs 1 (accept) or 0 (reject).

As the correctness condition, we require that for all A € N, (vk,sk) «+
DS.KG(1*), m € {0,1}*, and o «+ DS.Sign(sk, m), we have DS.Ver(vk,m, o) = 1.

We recall the definition of existential unforgeability under chosen-message at-
tacks (EUF-CMA security). For a digital signature scheme DS = (DS.KG, DS.Sign,



DS.Ver) and a PPT adversary A, we consider the following experiment:

Msg < (); (vk,sk) «+ DS.KG(1*);
EUE-CMA . (m/70_/) « ADS'Sig"(Sk")(Vk);
Exptps,4 (M) If DS.Ver(vk,m’,0’) = 1 Am/ & Msg
then return 1 else return 0

where DS.Sign(sk, -) is the signing oracle that takes a message m as input and
operates as follows: it updates Msg by Msg < Msg U {m}, computes a signature
o < DS.Sign(sk,m), and returns o to A.

Definition 1 (EUF-CMA). We say that a digital signature scheme DS is
EUF-CMA secure if for any PPT adversary A, we have AdvEgEfMA()\) =

Pr[ExptEgifMA()\) = 1] = negl()).

2.2 Obfuscation

Here, we recall the definitions for obfuscation (for circuits) [3] that we use in
this paper.

Let C = {Cx}ren be a class of polynomial-size circuits. Let Obf be a PPT
algorithm that takes the security parameter 1* and a circuit C' € C, as input,
and outputs some circuit C (called an “obfuscated circuit”). Obf is said to be
an obfuscator for C if it satisfies the following functional requirements: For all
A € Nand C € Cy, we have

— (Correctness (a.k.a. functionality preservation):) If C + Obf(1*, C), we have
that C(z) = C(z) for all inputs x (in the domain of C).
— (Polynomial slowdown:) |C| = poly(A,|C).

For a security notion for obfuscation, we will consider distributional virtual
black-box (VBB) security [2], which is sufficient for our purpose.

Definition 2 (Distributional Virtual Black-Box Security). Let Obf be
an obfuscator for a circuit class C = {Cx}ren. Let D = {Dy}ren be a class of
distributions such that Dy is a distribution over Cy for each A € N. We say
that Obf is distributional virtual black-box (VBB) secure for D if the following
holds: For any PPT adversary A, there exists a PPT simulator S such that for
any PPT predicate P, we have Adv%\ﬁi’&p()\) = |Pr[Expt%\éEE{5§a'()\) =1] -
Pr[EXpt%\éEg:%i;m()\) = 1]| = negl(\), where the real experiment Exptg\él?i_%ial()\)
and the simulator’s experiment Exptg\ﬁ?gﬁ;m()\) are defined as in Fig. .

3 Signature for Objects: Definition and Basic
Construction

This section provides the definitions for signature for objects (SfO). An SfO
scheme enables us to generate a signature on an object and to detect a replace-
ment for a fake one by verifying a signature.



BB | ()
C < D, C < Dy
C « Obf(1*,C) g+ S |0))
g+ A1 0) Return (P(C) Z9).

Return (P(C) = 9).

Fig. 1. The experiments for defining distributional VBB security of an obfuscator Obf.
In the simulator’s experiment Exptg\éﬁ%fﬁm (\), SC means that S has oracle access to

the circuit C.

We note that in order for this type of signature primitive to be possible,
there must first exist some mechanism to (1) extract some digital data from an
object, and (2) judge whether two objects are the same or not. (For example,
imagine a setting of identifying objects based on photographic images of the
objects (taken by a camera) by using some technology of image recognition and
machine learning.) In this paper, we assume that such a mechanism is given, and
define an SfO scheme on top of such a mechanism. Therefore, we first formalize
such a mechanism for extracting digital data of objects as well as identifying
objects as an object setting, and then give a formalization for SfO. For defining
the security of SfO, we would like to consider a class of adversaries that can
perform some physical actions on objects. To this end, we also introduce the
notion of physically-enhanced algorithms (PEAs) that captures such a class of
adversaries.

The rest of this section is as follows: In Section [3.1] we give a formalization
for an object setting. In Section we give definitions for a class of algorithms
that can handle objects. Then, in Section we give definitions for an SfO
scheme. Finally, in Section we show our basic construction of SfO as well as
its proof of security.

3.1 Object Setting

Here, we give the definition for an object setting in which (1) how to extract
data from an object, and (2) how to identify two objects, are defined. Looking
ahead, an SfO scheme as well as the class of adversaries for it will be based on
top of this setting.

Definition 3 (Object Setting). An object setting OS consists of (X, V, X, D,
Sen, Rx, Rp,C), each of which is defined as follows:

X: This is the set of all objects that can be treated by the sensing function Sen
explained below.

V (€ X): This is a subset of X. We will refer to the elements in V as valid
and will require that for the sensing function Sen defined below, it holds that
Sen(z) # L if and only if x € V.

X: This is a distribution over V. When a new object is created, it follows this
distribution.



D (C{0,1}*): This is the set of all (digital) data that could be generated by the
sensing function Sen explained below.

Sen: This is a “sensing” function that takes an object x € X as input, and
outputs data D € D or the special invalid symbol 1. ¢ D. This models some
device that “extracts” digital information from an object.

As highlighted above, we require that for all x € V we have Sen(x) # L
whereas for all v € X\ 'V, we have Sen(z) = L.

Rx : X x X — {0,1}: This is a relation between two objects for identifying whether
two objects are identical. That is, x,x’ € X are considered the same objects if
and only if Rx(x,z") = 1. (We note that such a relation may not be efficiently
computable in general, depending on a setting.)

We require Rx(xz,x) =1 for all z € X.

Rp :D x D — {0,1}: This is a relation between data.

We require that this is computable by a deterministic PT algorithm. We also
require that for all x,z’ € V, we have Rx(x,2’) = Rp(Sen(x), Sen(z')).

C: This is the set of “command” functions, which models physical actions to

objects. A command function may be a probabilistic function, and takes an
object (or multiple objectsﬁ) as input, and outputs a new object x’ € XU{L}
and some auziliary (digial) information z € {0,1}* about x and z'. Put
differently, if cmd € C, then cmd : X* — (XU {L}) x {0, 1}*.
Note that Sen can be naturally cast as a command function that takes an
object x € X as input, and outputs (no object and) data D € D as auziliary
information of x, and with this interpretation, we require that C contain
Sen. We also require that C contain the special command Create that, when
invoked, generates and returns a new object x € V by x + X (and no
auziliary information).

On the Relationship between Rx and Rp. Note that we require that for all
x,x’ € V, we have Rx(x,2’) = Rp(Sen(z),Sen(z)). This might seem a somewhat
too idealized condition, say if we think of a setting where objects are identified
by some image recognition technology based on machine learning, which may not
necessarily support error-less identification of two objects by their corresponding
data. One possible interpretation of our treatment is that we implicitly assume
the identification of objects using solely their corresponding data taken via Sen.
For simplicity, we stick to the above treatment, but it will be interesting to
investigate whether some relaxation for the relation between Rx and Rp can be
introduced.

Ezamples. Here, we give some examples of an object setting. Consider a setting
where electric chips are manufactured in a factory. Suppose the chips can be
identified with some photographic images taken by a camera using some tech-
nology of image recognition (say, based on machine learning). Then, the set of
valid objects V corresponds to the chips produced in the factory, and Sen corre-
sponds to the camera for taking a photographic image. The set of all data D is

8 We assume that the arity of an input is specified for each command function.
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then photographic images that can be generated by the camera (i.e., Sen). Rx
identifies two chips x and 2’ iff z and 2’ are the same chip, and Rp judges if they
are the same in the images taken by Sen. X’ corresponds to the way a new chip
is produced in the factory. C may contain any action that can be physically per-
formed on a chip, say turning in some other direction, heating it up, and cutting
it into two, etc. (Note that C could contain actions that destroy an object.)

In another example, where an electric chip admits a physically unclonable
function (PUF) [IT/23] that can be used for identifying two objects, Sen cor-
responds to obtaining the PUF-value of a given chip, and Rp will identify two
objects to be identical if the given PUF-values are “close” (where the features of
the PUF will determine the closeness). Other components will remain the same.

3.2 Algorithms that Can Interact with Physical Objects

As a preparation for defining SfO, we introduce two types of algorithms that can
treat physical objects, a sensing algorithm and a physically-enhanced algorithm,
which are both associated with an object setting OS. Informally, a sensing algo-
rithm models an algorithm that can extract digital data from a physical object
via a sensing function Sen supported in OS. On the other hand, a physically en-
hanced algorithm (PEA) models an algorithm that can indirectly interact with
objects via command functions cmd € C supported in OS.

Our main idea behind the formalization here is that interactions between
algorithms and physical objects are done only via the sensing function (in the
case of a sensing algorithm) or command functions (in the case of a PEA), and
are conducted outside algorithms. Looking ahead, sensing algorithms are a class
of algorithms to which the signing and verification algorithms for an SfO scheme
belong, while PEAs are a class of algorithms to which an adversary against the
security of an SfO scheme belongs.

The formal definitions of these notions are as follows.

Definition 4 (Sensing Algorithm and Physically-Enhanced Algorithm).
Let OS = (X,V,X,D,Sen, Rx, Rp,C) be an object setting.

— A sensing algorithm with respect to OS is a PPT algorithm that has access

to an object x € X given as an input via the sensing function Sen with which
data D € D from the object x can be extracted.
In order to distinguish an object from ordinary (digital) inputs given as an
input to a sensing algorithm, we will use the boxed notation. For example, if
A is a sensing algorithm and is given an object x € X as an input, we write
Az).

— A physically-enhanced algorithm (PEA) with respect to OS is a PPT algo-
rithm that has access to the command oracle O¢ explained next.

The command oracle Oc maintains a counter ¢ (initially 0) and an ordered
list Lx of objects (initially empty). Oc accepts a “command” query consisting
of (the name of ) a command function cmd € C and optionally a set of indices
(i1,...,1n) € [¢]™ (where n is the number of inputs that is specified by cmd).
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Then, it sets ¢ < ¢+ 1, computes (¢, zc) < cmd(x;,,...,2;, ), appends x.
to the end of the list Lx, and returns z. to the caller.

We will omit “with respect to OS” when it is clear from context.

3.3 Signature for Objects

Let OS = (X,V,X,D,Sen, Rx, Rp,C) be an object setting. A signature for ob-
jects (SfO) scheme SfO with respect to OS consists of the following algorithms.

Sf0.KG(1*) — (VK, SK): This is a PPT algorithm for key generation. It takes
the security parameter 1* as input, and outputs a key pair (VK, SK).

Sf0.Sign(SK,[z]) — o: This is a sensing algorithm for generating a signature.
It takes as input a signing key SK and an object € X as input, and outputs
a signature o.

Sf0.Ver(VK,[z],0) — 1/0: This is a sensing algorithm for verifying a signature.
It takes a verification key VK, an object x € X, and a signature ¢ as input,
and outputs 1 (accept) or 0 (reject).

As the correctness condition, we require that for all A € N, z,2’ € V such
that Rx(z,z') = 1, (VK, SK) + Sf0.KG(1*), and o «+— SfO.Sign(SK,[z]), we have

SfO.Ver(VK, [/ ],0) = 1.

Basic Security Definition: Unforgeability. Here, we introduce a natural adoption
of EUF-CMA security for ordinary signatures to the setting of SfO schemes,
which we call ezistential unforgeability under chosen-objects attacks (EUF-COA
security). Similarly to EUF-CMA security for an ordinary signature scheme,
EUF-COA security guarantees that it is hard for any PEA adversary to forge a
signature on objects for which they have never obtained signatures. Note that a
PEA adversary may generate a new object via queries to the command oracle
Oc, and it is allowed to obtain signatures for any objects in the object list Lx
maintained in Oc¢.

Formally, the EUF-COA security for an SfO scheme is defined as follows. Let
0S = (X,V,X,D,Sen, Rx, Rp, C) be an object setting, and let SfO = (SfO.KG,
SfO.Sign, SfO.Ver) be an SfO scheme with respect to OS. Consider the following

experiment ExptE%FjOA()\) in which a PEA adversary A is execute

c+0; Lx <+ 0; Ind <+ 0;
ExptEUF-COA (1) . (VK,SK) « SfO.KG(1Y); (i',0") = A9 s (VK);
XPtsi0.4 (N E | 1 SF0.Ver(VK, [ ], 0') = 1 AV € Ind : Re(ir, ) = 0

then return 1 else return 0

where O¢ is the command oracle for A defined in Definition 4| (which updates
the counter ¢ and the object list Lx upon a query from A), and Osjgy, is the

9 We remind the reader that as defined in Definition a PEA has access to the
command oracle O¢ that internally maintains the counter ¢ and the object list Lx,
which we use for defining A’s winning condition here.
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SfO.KG(1*) : $f0.Sign(SK,[7]) : SfO.Ver(VK,| 2’ | o) :
(VK,SK) < DS.KG(1*)| D ¢ Sen(x) If ¢ = L then return 0.
Return (VK, SK). If D=1 then return o := L.| D’ < Sen(a’)
op < DS.Sign(SK, D) Parse o as (D, op).
Return o := (D,op). If L € {D', D} then return 0.
If DS.Ver(VK, D, 0p) = 1
and Rp(D’',D) =1
then return 1 else return 0.

Fig. 2. The SfO scheme SfO;.

signing oracle that takes an index i € [c] as input, and operates as follows: it
updates Ind by Ind < Ind U {3}, computes a signature o + SfO.Sign(SK,),
and returns o.

Definition 5 (EUF-COA). We say that an SfO scheme SfO with respect to
an object setting OS is EUF-COA secure if for any PEA adversary A, we have
Advlg SO (V) = Pr[Expt§l S22 (\) = 1] = negl(\).

On Security of Ordinary (Non-physical) Cryptographic Primitives against PEA
Adwversaries. In this paper, we will construct an SfO scheme using ordinary
(non-physical) cryptographic primitives as building blocks, and in the security
proof, we would like to reduce the security of the proposed signature for objects
schemes to that of the building blocks. However, one can quickly realize that
there is a subtle technical problem: Although the security of an SfO scheme is
defined with respect to PEA adversaries, that of ordinary cryptographic primi-
tives is defined with respect to standard PPT adversaries that cannot deal with
physical objects, and thus there is a mismatch regarding the class of adversaries.
To circumvent this subtle problem, we simply assume that the ordinary crypto-
graphic primitives used as building blocks are secure against PEA adversaries.
We believe that this is a reasonable assumption, since ordinary cryptographic
primitives are defined (and their security are proved) independently of any object
setting. (It will be a ground-breaking finding if there is a cryptographic primitive
whose security is defined with respect to PPT adversaries can be attacked if an
adversary can perform some physical action.)

3.4 Basic Construction

Here we show our first construction SfO;, which is constructed by simply com-
bining an ordinary digital signature scheme DS and the relation function Rp
supported in an underlying object setting OS.

0SS = (X, V,X,D,Sen, Rx, Rp,C) be an object setting. Let DS = (DS.KG,
DS.Sign, DS.Ver) be an ordinary digital signature scheme. Then, using DS as a
building block, we construct an SfO scheme SfO; as described in Fig. [2]
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It is straightforward to see that SfO; satisfies correctness. By the prop-
erty of Rx and Rp, if x € V used in signing and 2’ € V used in verifica-
tion satisfy Rx(z',2) = 1, we have Rp(D’, D) = 1, where D <« Sen(z) and
D’ + Sen(2’). As long as the digital signature scheme DS satisfies correct-
ness, we always have DS.Ver(VK, D,op) = 1, where (VK, SK) < DS.KG(1*) and
op < DS.Sign(SK, D).

The security of SfO; is guaranteed by the following theorem, which is also
straightforward to prove.

Theorem 6. If the digital signature scheme DS is EUF-CMA secure against
PEA adversaries with respect to OS, then SfOy is EUF-COA secure.

We defer the formal proof of this theorem to Appendix [A] Informally, if a
PEA adversary A attacking the EUF-COA security wins, then it outputs a valid
signature for data extracted from unqueried objects. Therefore, we can construct
another adversary attacking the EUF-CMA security of DS using A.

4 Conf-COA Security and Construction

In this section, we introduce a security definition for SfO concerning privacy
of objects that we call confidentiality under chosen object attacks (Conf-COA
security). This security notion ensures that given a signature on an object that
is generated according to the distribution X supported in an object setting, it
is hard to gain any information on the data corresponding to the object. This
security notion is naturally desirable in a supply chain scenario where an object
being signed is a product of a company which itself and/or its corresponding
data could contain some confidential information, and a signer would like to
prevent its information from leaking from a signature to those who are outside
the supply chain and need not verify the signature. We note that this security
notion is orthogonal to EUF-COA security.

This section provides the security definition of Conf-COA in Section [4.1] and
a provably secure construction that satisfies EUF-COA and Conf-COA using an
obfuscation in Section [£:2] Moreover, we consider an instantiation of our scheme
in Section

4.1 Security Definition: Conf-COA

Here, we give a formal definition of Conf-COA security.
Let OS = (X,V,X,D, Sen, Rx, Rp,C) be an object setting, and let SfO =
(SfO.KG, SfO.Sign, SfO.Ver) be an SfO scheme with respect to OS. For PEA algo-

rithms A, S, and a predicate P, consider the real experiment Exptgfng%A'Real (\)

and the simulated experiment Exptg%’,fgng'Sim(A) as described in Fig. [3| In the
experiments, where O¢ and Osjgn are the command oracle and signing oracle,
respectively, that are defined in the same way as in the EUF-CMA experiment.
We stress that the “challenge object” x* is not included in the object list Lx
maintained in O¢ in both experiments, and thus A and S have no control over
it as well as the data D* extracted from x*.
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ExptS S9N - ExptEBIERm () -
c+0; Lx<+ 0 c+0; Lx+ 0
"« X; D" <+ Sen(z*)| z"<+ X; D" <« Sen(z")
(VK, SK) < SfO.KG(1*) g« 8% (1Y)

o* + SfO.Sign(SK, 2" )

g + APc:Osien (VK o™)
Return (P(D*) < 9).

Return (P(D*) < 9).

Fig. 3. The experiments for defining Conf-COA security for an SfO scheme SfO.

SfO.KG(1*) :
(VK, SK) + DS.KG(1*)
Return (VK, SK).

SfO.Sign(SK,[z])

D < Sen(x)

If D = 1 then return o = L.
Let Rp(-) := Ro(-, D).

R+ Obf(1*, Rp)

o5 + DS.Sign(SK, R)

Return o := (R,05).

SfO.Ver(VK, |2/ o) :

If ¢ = L then return 0.
D’ + Sen(z")
Parse o as (R, 05)-
If L € {D’, R} then return 0.
If DS.Ver(VK, R,05) = 1
and R(D') =1
then return 1 else return 0.

Fig. 4. The SfO scheme SfOs.

Definition 7 (Conf-COA). We say that an SfO scheme SfO with respect to
an object setting OS is Conf-COA secure if for any PEA adversary A, there

evists a PEA simulator S such that for any PPT-computable predicate P, we
have AV S () o= | Pr{EXpISE SO I(0) = 1] - PrlEsptS SOAsm(3) =

1]| = negl(X).

4.2 Our Construction Based on Obfuscation

Here we show our second construction SfOs. This is a simple variant of our first
construction SfO;, where instead of directly signing the data D in the signing
algorithm, we now sign an obfuscated circuit R + Obf(1*, Rp(-, D)), and the
relation Rp over the data D contained in a signature and D’ computed in the
verification is now done using an obfuscated circuit R.

Formally, our construction is as follows. Let OS = (X,V,X,D, Sen, Rx,
Rp, C) be an object setting. Let R be the class of circuits {Rp(-) := Rp(-, D)} pep,
where Rp(-, D) denotes a circuit which has D hardwired, and takes some data
D’ as input, and returns Rp(D’, D). We assume that there is a one-to-one cor-
respondence between a circuit Rp € R and D € D, and D can be extracted
in the clear from Rp. Let Obf be an obfuscator for R, and let DS = (DS.KG,
DS.Sign, DS.Ver) be an ordinary digital signature scheme. Then, using Obf and
DS as building blocks, we construct an SfO scheme SfO4 as described in Fig.

The correctness of SfO5 can be seen similarly to SfO;. As explained earlier,
the only essential difference of SfO, from SfO; is that in the former, the check
of Rp(D’', D) is done using the obfuscated circuit R which is computed as R +
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Obf(1*, Rp) and Rp(-) := Rp(-, D). Then the correctness of Obf ensures that if
Rp(D’, D) =1 then R(D') = 1. The rest is unchanged from SfO;.

We now show how the EUF-COA and Conf-COA security of SfO; can be
established.

Theorem 8. If the digital signature scheme DS is EUF-CMA secure against
PEA adversaries, then SfOy is EUF-COA secure.

We defer the formal proof of this theorem to Appendix [B] Informally, if a
PEA adversary A attacking the EUF-COA security wins, then it outputs the
index i* of an object x;+ and a valid signature for an obfuscated circuit R such
that R(D*) = 1 where D* < Sen(z;~). From the winning condition for A, we
have E;(D*) = 0 for all j € Ind, which means that .4 does not know any signature
of R that it obtained via signing queries. Therefore, we can construct another
adversary attacking the EUF-CMA security of DS using A.

For the Conf-COA security of SfOs, we need the property that the dis-
tribution of the data taken from a newly generated object via Sen, namely
{z + X;D <« Sen(x) : D}, has sufficient amount of entropy, so that for any
data D’ € D, the probability that Rp(D,D’) = 1 occurs is sufficiently small.
Following [2I10], we call such a property of a distribution evasive, and define it
as a property of an object setting.

Definition 9 (Evasiveness). We say that an object setting OS = (X,V, X,
D, Sen, Rx, Rp,C) is e-evasive if for any D' € D, Prlx < X;D + Sen(z) :
Rp(D,D’)=1] <e.

Theorem 10. If the obfuscator Obf satisfies distributional VBB security for
the distribution {x < X; D < Sen(z) : D} against PEA adversarieﬂ and the
distribution {x < X; D < Sen(z) : D} is e-evasive for some negligible € = e()),
then SfO4 is Conf-COA secure.

The formal proof of this theorem is given in Appendix [C} We briefly give
a proof sketch. From a Conf-COA adversary A, we construct an adversary B
against the distributional VBB security of Obf. B is initially given as input
an obfuscated program R* that is generated as z* < X, D* < Sen(z*), and
R* + Obf(1*, Rp-), and perfectly simulates the real Conf-COA experiment for
A. Due to the distributional VBB security of Obf, there exists a simulator Sg
such that its output distribution is negligibly close to that of B (and hence
that of A). Then, from Sp, we construct a simulator S for A. The Sz is a
simulator and can submit a query to the circuit Rp+(-), but the evasiveness of the
distribution allows S to answer it to always 0, which ensures that the distribution
of the output of Sp and that of S are negligibly close. Then, combining all the
arguments, we can conclude that the output distribution of A is negligibly close
to that of S.

10 When we consider distributional VBB security for an obfuscator against PEA adver-
saries, we consider not only an adversary but also a simulator to be PEA algorithms.
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4.3 Instantiation

Unfortunately, there does not exist an obfuscator that can obfuscate all polynomial-
sized circuits with (worst-case) VBB security [3]. However, this impossibility
result does not rule out the existence of an obfuscator for a particular class of
circuits, in particular the one considered in the previous subsectionE

For example, Galbraith and Zobernig [10] showed a distributionally VBB
secure obfuscator for “fuzzy Hamming distance” predicates (from the hardness
of so-called the decisional distributional modular subset product problem). Here,
a fuzzy Hamming distance predicate is a circuit Rp(-) such that Rp(D’) =1
iff the Hamming distance of the input D’ is close (within some pre-determined
distance r) to the value D that is hardcorded in the circuit Rp. By using their
obfuscator, our construction SfOs yields a Conf-COA secure SfO scheme for an
object setting where the relation Ry just tests the closeness of the inputs by the
Hamming distance.

We do not claim this scheme can be used in a realistic scenario (such as a
supply-chain scenario), but hopefully techniques of obfuscation will be developed
and more complicated classes of circuits can be obfuscated with distributionally
VBB security in the future, so that our Conf-COA secure construction can be
instantiated for a wider class of object settings.
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Appendix

A Proof of Theorem 1

Proof. Let A be a PEA adversary attacking the EUF-COA security of SfO;.
We construct another PEA adversary B against the EUF-CMA security of the
underlying digital signature scheme DS with the same success probability as A,
which implies the theorem. The description of B is as follows.

B initially receives a verification key VK in its EUF-CMA experiment regard-
ing DS. Then, B runs A(VK), and responds to each of A’s queries as follows:

— For each command query from A, B forwards the query to B’s own command
oracle O¢, and returns the result from O¢ back to A. (Note that this causes
an update of the counter ¢ and the list Lx maintained in Oc.)

— For each signing query ¢ € [¢] from A (where ¢ denotes the current counter
maintained by O¢), B makes a command query asking B’s oracle O¢ to use
Sen on z; (which must have been generated as a result of A’s command
queries made so far and contained in Lx in Oc¢), and receives D; < Sen(x;)
from O¢. B now proceeds as follows:

e If D, = 1, then B returns o := L to A.
o Otherwise, B sends D; to its signing oracle to obtain a signature op,.
Then, B returns o := (D;,0p,) to A.
When A outputs a pair (i*,0* = (D*,0},.)) and terminates, B outputs
(D*,0%).) as its own message/signature pair for DS and terminates.

The above completes the description of B. It is straightforward to see that B
simulates the EUF-COA experiment perfectly for A. If A’s output satisfies the
winning condition of the EUF-COA experiment, we have DS.Ver(VK, D*, o},.) =
1 and Rp(D"*,D*) = 1 where D" < Sen(xz;-), and Rx(z;«,x;) = 0 for all
j € Ind, where Ind denotes the set of signing queries submitted by A. Then, the
properties of Rx and Rp imply that either D; = L or Rp(D™,D;) = 0 holds
for all j € Ind as well, and together with the condition Rp(D'*, D*) = 1, we
must have D* ¢ {D,};cina \ {L}. Note that the set of signing queries Msg made
by B is exactly {D;};jcind \ {-L}. These imply that B has not submitted D* as
a signing query. Hence, whenever A’s output satisfies the winning condition of
the EUF-COA experiment, B’s output also satisfies the winning condition of
the EUF-CMA experiment. Putting everything together, we can conclude that
AdvggréCMA(A) = Advg%Fl'SL‘OA()\), as required. |

B Proof of Theorem 2

Proof. Let A be a PEA adversary attacking the EUF-COA security of SfOs.
We construct another PEA adversary B against the EUF-CMA security of the
underlying digital signature scheme DS whose success probability is the same as
that of A, which implies the theorem. The description of B is as follows.

B initially receives a verification key VK in its EUF-CMA experiment regard-
ing DS. Then, B runs A(VK), and responds to each of A’s queries as follows:
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— For each command query from A, B forwards the query to B’s own command
oracle O¢, and returns the result from O¢ back to A. (Note that this causes
an update of the counter ¢ and the list Lx maintained in Oc.)

— For each signing query ¢ € [¢] from A (where ¢ denotes the current counter
maintained by O¢), B makes a command query asking B’s oracle O¢ to use
Sen on z; (which must have been generated as a result of A’s command
queries made so far and contained in Lx in Oc¢), and receives D; < Sen(z;)
from O¢. B now proceeds as follows:

e If D; = | then B returns o := L to A. N
e Otherwise, B computes R; + Obf(1*, Rp,), sends R; to its signing oracle
to obtain a signature o . Finally, B returns o := (R;, og,) to A

*

When A outputs a pair (i*,0* = (E*,a}%*)) and terminates, B outputs

(ﬁ*, U%*) as its own message/signature pair for DS and terminates.

The above completes the description of B. It is straightforward to see that B
simulates the EUF-COA experiment perfectly for A. If A’s output satisfies the
winning condition of the EUF-COA experiment, we have DS.Ver(VK, R* O'*E*) =
1 and R*(D*) = 1 where D* « Sen(z;-), and Rx(x+,xj) = 0 for all j € Ind,
where Ind denotes the set of signing queries submitted by A. The properties of
Rx and Rp imply that either D; = L or Rp(D*,D;) = 0 holds for all j € Ind
as well. Note that the set of signing queries Msg made by B is {ﬁj biemd \ {L},
where for convenience we interpret fij = 1 when D; = 1. We now show that
there does not exist j’ € Ind at which R* = }~€j/ holds. Let us assume that such
j' exists for the sake of contradiction. Then, for this j’, we have Ej/(D*) =1,
which in turn implies Rp(D*, D;j/) = 1. The properties of Rx and Rp imply that
Rx(2;+, ;) = 1, but this contradicts the winning condition of \A. Hence, there
does not exist j’ € Ind such that R* = Ej/, and thus B has not submitted R* as
a signing query. Therefore, whenever A’s output satisfies the winning condition

of the EUF-COA experiment for SfO5, B’s output satisfies the winning condition

of the EUF-CMA experiment for DS. In conclusion, we have Advgg’F[;CMA()\) =

AdvEfUOFQ'%)A()\), as required. |

C Proof of Theorem 3

Proof. Let A be an arbitrary PEA adversary attacking the Conf-COA security
of SfO5. We will construct a PEA simulator S, and then show that for any PPT
predicate P, we have

| Pr{Exptsl 0 (A) = 1] — Pr[Exptsgl &5 O™ (A) = 1] = negl(A). (1)

For showing such a simulator S for A, we first consider the following PEA
adversary B that attacks the distributional VBB security of Obf:

B is initially given as input an obfuscated program R* that is generated as
r* < X, D* < Sen(z*), and R* + Obf(1*, Rp+). Then, B runs (VK,SK)
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DS.KG(1*) and 0%, DS.Sign(SK, R*), and sets o™ + (E*,a}%*). Then, B runs
A(VK,o*), and responds to each of A’s queries as follows:

— For each command query from A, B forwards the query to B’s own command
oracle O¢, and returns the result from O¢ back to A. (Note that this causes
an update of the counter ¢ and the list Lx maintained in Oc¢.)

— For each signing query i € [¢] from A (where ¢ denotes the current counter
maintained by O¢), B makes a command query asking B’s oracle O¢ to use
Sen on z; (which must have been generated as a result of A’s command
queries made so far and contained in Lx in O¢), and receives D; < Sen(z;)
from O¢. B now proceeds as follows:

e If D; = | then B returns o := 1 to A. N
e Otherwise, B computes R; + Obf(1*, Rp,) and OR, DS.Sign(SK, R;),
and then returns o := (R;, og,) to A
When A terminates with output some value g as a guess for P(D*), B outputs
this g as a guess for the predicate P'(Rp-) := P(D*), and terminates.

The above completes the description of B. Note that B perfectly simulates
the real Conf-COA experiment for A. Therefore, we have

Pr[Expt§ SR () = 1] = PrExptdiER ' (1) = 1) 2)

Furthermore, by the distributional VBB security of Obf, there exists a PEA
simulator Sp for B such that we have

| PrExptP% 557 (1) = 1] - PriExptd%Sm () = 1] = negl(\).  (3)

Now, using Sg, we define the simulator S for A that runs in Exptg%';g?é‘gm (A)

as follows[?]
S simply runs Sg(1*, |Rp-

), and responds to each of Sg’s queries as follows:

— For each command query from Sg, S forwards the query to 8’s own command
oracle O¢, and returns the result from O¢ back to Sp. (Note that this causes
an update of the counter ¢ and the list Lx maintained in Oc.)

— For each query D’ € D from Sgp to a circuit that Sg expects to have access
to, S always returns 0 to Sp.

When Sg terminates with output some value g as a guess for P'(Rp~) := P(D*),
S simply outputs this g (as a guess for P(D*)) and terminates.

The above completes the description of S. Note that S perfectly simulates the
command oracle for Sg due to the use of its command oracle. Therefore, unless
Sp submits data D’ such that Rp(D*,D’) = 1 as a circuit query, S perfectly

simulates Exptdo\{,giﬁfg()\) for Sg. By the e-evasiveness property of OS and e

2 Note that in the simulated experiment Exptg}’é‘;’,cso,/;;’Si"‘(/\)7 the data D* with which
P is considered is generated so that z* <— X, D* < Sen(z"), outside S. Note also
that Sg expects to have oracle access to the circuit Rp=(-).



22

being negligible, the probability that Sz submits such a query is bounded by
negl()A). Hence, we have

| PriExptsig) sop ™ () = 1] — PrExpt&yrs,  (A) = 1]] = negl(A).  (4)

Combining Eqns. to , we have Eqn. (1)), as required. Therefore SfOq
satisfies Conf-COA security. [ |
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