
Proof of Necessary Work: Succinct State
Verification with Fairness Guarantees

Assimakis Kattis, Joseph Bonneau

New York University

Abstract. Blockchain-based payment systems utilize an append-only
log of transactions whose correctness can be verified by any observer.
Classically, verification costs grow linearly in either the number of trans-
actions or blocks in the blockchain (often both). Incrementally Verifiable
Computation (IVC) can be used to enable constant-time verification, but
generating the necessary proofs is expensive. We introduce the notion of
Proof of Necessary Work (PoNW), in which proof generation is an in-
tegral part of the proof-of-work used in Nakamoto consensus, producing
proofs using energy that would otherwise be wasted. We implement and
benchmark a prototype of our system, enabling stateless clients to verify
the entire blockchain history in about 40 milliseconds.

Keywords: proof-of-work · zero-knowledge proofs · consensus algorithms

1 Introduction

Balancing throughput with decentralization is a major challenge in modern cryp-
tocurrencies. Current systems such as Bitcoin require participants to process the
entire system history to verify that the current state (the most recent block in
the chain) is correct. Despite strict limits on blockchain growth which cap total
system throughput, verification costs are prohibitive for many clients. Joining
the system requires downloading and verifying over 450 GB of blockchain history
(as of 2022) which takes days on a typical laptop. In practice, most clients don’t
perform independent verification and rely on a trusted third party instead.

1.1 Succinct Blockchains

Succinct blockchains aim to support efficient verification of the system’s entire
history by any participant without trusting any third parties. Participants only
need to obtain some fixed public parameters from a trusted source (e.g. the
genesis block and the system’s rules). Participants can then join the system at
any time and receive a succinct validity proof for the most recent block in the
system using minimal bandwidth and time. These proofs demonstrate both that
there exists a sequence of valid transactions from the genesis state S0 to the
state committed in the current block, and that the block’s branch (the sequence
of predecessor blocks) is of quality q according to the consensus protocol. In this

work we focus on aggregate proof-of-work (PoW) difficulty as the measure of
branch quality, as used in Bitcoin consensus. Currently, systems such as Bitcoin
require O(t + h) work to completely verify a branch containing t transactions
and h blocks. Succinct proofs enable optimal asymptotic performance of O(1)
verification costs for a client joining the system at any point in its history.

1.2 Incentivizing State Compression

A key challenge for succinct blockchains is incentivizing the (relatively expensive)
costs of computing a validity proof for each block. Meanwhile, Bitcoin employs
proof-of-work (PoW), which provides system security by verifying energy con-
sumption. This energy, while necessary for the consensus protocol, is not used
for anything else and hence is often described as ‘wasted.’ We propose a new
approach to useful PoW in which the work aids in the verification of the system
itself. We denote this as proof of necessary work (PoNW) and show how it can
be used within a succinct blockchain architecture as a suitable PoW puzzle.

A synergistic benefit is directly incentivizing hardware acceleration of zero-
knowledge proofs. This is relevant for many distributed payment systems in
which proof generation time is a critical bottleneck limiting transaction through-
put and/or latency [6,8,16,21]. Indeed, recent industry developments [2] based
on our work have yielded interest in dedicating resources toward an industry-
wide effort to maximize the performance of zero-knowledge proof systems. We
believe this to be beneficial not only for distributed payments, but also for any
application where high-throughput, low-latency and low-energy zero-knowledge
proof generation is required.

1.3 Contributions

Building a consensus algorithm which produces validity proofs for each block as
a useful byproduct requires carefully designing the PoW process to replicate the
security properties of Bitcoin’s non-useful puzzle. Our main technical contribu-
tion is a method to deeply embed a nonce into the proof computation process,
making it suitable as a progress-free PoW puzzle. We formalize this intuition
by introducing the notion of ϵ-amortization resistance and propose a protocol
which achieves this. Our results are based on the average-case hardness of mul-
tiexponentiation in the Generic Group Model (GGM) [35].

We implement our prototype at an 80-bit security level and benchmark its
performance and establish feasibility. Our system:

1. produces block headers of size < 500 bytes for any number of txs/block,
2. allows stateless clients to verify a block in < 20ms, and
3. achieves throughput of 50 tx/block.

In terms of throughput and block header size, our prototype is about an
order of magnitude worse than Bitcoin. Bitcoin block headers are 80 bytes and
throughput is about 1,000 transactions per block. However, our system allows

2

a stateless client to rapidly verify a block (and thus its complete history) in
milliseconds with 500 bytes of data downloaded. In Bitcoin, full verification of
a block requires many hours of computation time and downloading hundreds of
gigabytes of data. The efficient block verification provided by our system also
assists miners in quickly validating new blocks broadcast on the network, which
may reduce the risk of block collisions and enable faster block frequency.

2 Proof of Necessary Work

To allow proof generation to serve as a PoW puzzle, we require (a) a proof πi
whose generation algorithm P is moderately difficult to compute and (b) a PoW
puzzle PH,d

V that requires the miner to fully recompute P to test a potential
solution. The second property is necessary for the puzzle to be progress-free for
fairness to miners of differing size. Indeed, if generating unique proofs πi based
on randomly sampled nonces ni is sufficiently ‘hard’, then using PH,d

V instead
of a generic puzzle (such as computing the double SHA256 digest in Bitcoin)
would allow us to not only perform PoW with the same theoretical guarantees,
but also compute a valid proof πi in the process.

We do not formally analyze any consensus properties, since our goal is not
to design a new consensus protocol but to retain that used by Bitcoin (and
similar systems) and inherit its properties. However, we would like the work
done to be useful by producing proofs of each block’s validity. We introduce
the notion of performing PoW by proving the validity system state, denoted by
Proof of Necessary Work (PoNW).

2.1 Definitions

We formalize this definition below, and provide the relevant security model. For
a full specification of all terms and notations, we refer the reader to Appendix A.

Definition 1 (Proof of Necessary Work). Given a pseudorandom function
H and a proof πi ∈ Z in some RSM with transition tuple (NewState,VerifyState),
we define the verification puzzle PH,d

V : S × S × Z → {0, 1} with difficulty d as
the solution to the following function:

PH
V (Si,Si+1, πi+1) = 1

[
VerifyState(Si,Si+1, πi+1) = 1

H(πi+1) < d

]
,

where 1[·] is the indicator function.

By having access to a proof generating algorithm P(t,Si,Si+1, ni) → πi+1

that generates unique (yet valid) πi+1 for each ni, we can generate πi+1 for
Si+1 = NewState(t,Si, πi) using a uniformly randomly sampled ni until the
puzzle condition is satisfied:

PH
V (Si,Si+1,P(t,Si,Si+1, ni)) = 1.

3

Then πi+1 suffices for public verification that PoW has been performed. This is
because our prover will always fail with constant probability (when H(πi+1) ≥
d), so iteratively sampling new proofs (by sampling new ni) until a valid one is
found can be shown, under the assumption that P is the most efficient way to find
such an ni, to be a memoryless exponential process and hence fair. Note that,
by construction, we also guarantee that πi+1 is a valid witness for the RSM.
The number of transactions verified is always fixed (with empty transactions
still ‘added’) as otherwise miners would be incentivized to mine puzzles with the
smallest blocks.

An Initial Approach A natural thought would be to require the generation
of proofs until H(π) < d, as is proposed in the previous section. In the case that
the proof is unique to the state and witness input, we can ensure that by adding
a nonce in the input we will always get a different hash for π. However, this
can lead to unfair outcomes. When computing π, the adversary can retain the
parts of π that don’t change between nonces and therefore substantially decrease
proof generation time with respect to other provers. This means the process is
not memoryless, and so the fairness of the system is compromised.

Amortization Resistance Like Nakamoto consensus, our puzzle needs the
property that solutions are equally hard to test even after testing an arbitrary
number of previous solutions. In other words, a miner should not be able to
amortize costs while testing multiple potential solutions. This property is defined
more formally below based on the µ-Incompressibility of [28], although we work
in the bounded-size precomputation model. We model PoNW as a function fO

with limited access to some oracle O that performs a hard computation in an
encoding of some group G.

Definition 2 (ϵ-Amortization Resistance). For inputs of length λ and ouputs
q ∈ poly(λ), function fO = {fO(n)}n∈N is ϵ-amortization resistant on average
with respect to a sampler S if for all adversaries A = (AO

1 ,AO
2) with A perform-

ing less than (1− ϵ)qN queries to the oracle O on average, where N number of
queries required for one evaluation of fO(n) on average, the following is negli-
gible in λ:

Pr

 {ni}qi=1 ← n, (n, aux)← S(1λ)
∀i ∈ [q], πi = fO(ni) precomp← AO

1 (1
λ, aux)

{πi}qi=1 ← AO
2 (1

λ, n, precomp)

 .
This definition captures the fact that computing multiple proofs does not

come with marginal gains: indeed, provers cannot use larger computational re-
sources to batch process proofs and achieve disproportionate performance im-
provements. By preventing large miners from achieving algorithmic returns-to-
scale, this property is crucial in ensuring fairness. With the above objectives in
mind, we now look at how to adapt our implementation to realize such a system.

4

Prover Computational Costs Before we look at designing an amortization
resistant PoNW system, we summarize the computationally expensive compo-
nents of proof generation in the Quadratic Arithmetic Program (QAP) Non-
Interactive Proof (NIPs) of [30] compiled with [22]. For an ℓ-size statement with
m internal variables and n constraints, the prover P needs to (1) update inputs
and witnesses, and (2) perform 9m + n exponentiations in G using elements
from the proving key as bases. Since updating variable assignments is orders-of-
magnitude faster, amortization resistance requires P to recompute (almost) all
exponentiations for each new nonce. We provide the formal definition of QAP
instances below for completeness.

Definition 3. A QAP Q over field F contains three sets of m + 1 polynomials
V = {vk(X)},W = {wk(X)},Y = {yk(X)}, for k ∈ {0, ...,m} and a target
polynomial t(X) of degree n. Suppose F is a function that takes as input ℓ1
elements and outputs ℓ2 elements for a total of ℓ = ℓ1 + ℓ2 elements. We say
that Q computes F if: (a1, ..., aℓ) ∈ Fℓ is a valid assignment of F ’s inputs and
outputs iff there exist (aℓ+1, ..., am) for which t(X) divides p(X) where

p(X) :=

(
v0(X) +

m∑
i=1

vi(X)

)
·

(
w0(X) +

m∑
i=1

wi(X)

)
−

(
y0(X) +

m∑
i=1

yi(X)

)
.

Amortization of Multiexponentiation Multiexponentiation is inherently
amortizable [17,20] given enough memory, although space requirements scale
exponentially with the number of computed elements. This is because we can
precompute the exponents of specific basis elements and perform look-ups that
can be used by multiple evaluations at once. We make precise the relationship
between size and amortization gain to demonstrate that non-negligible amorti-
zation gains require an infeasibly large amount of space. Since we are interested
in average-case guarantees, all input elements to the multiexponentiation algo-
rithm (i.e. the enumerated exponents, or puzzle instances) are sampled uniformly
randomly from some S.

We consider amortization in Shoup’s Generic Group Model (GGM) [35],1 in
which the adversary can only compute products based on existing group elements
(with non-negligible probability), or directly query the exponentiation of some
index. The adversary has access to a multiplication oracle O : G×G→ G, which
returns the multiplication of the input elements over some random encoding
σ : Zp → G. This oracle computes O(σ(i), σ(j)) = σ(i + j). The adversary
may also use a polynomially-sized precomputation string. Since they don’t have
access to the exponents of the bases that are being multiplied together (so as to
perform a direct look-up), computing some σ(k) requires the generation of an
addition chain ending with σ(k).

However, this is the only assumption underlying the lower-bound results
which prove the optimality of (the generalized) Pippenger’s algorithm [20], as
they obtain lower-bounds on the length of the minimal addition chain needed to
1 Maurer proposed a slightly different GGM definition [27], for a comparison see [38].

5

compute some element. In short, our main formal contribution relies on adapting
the packing lower-bound ideas of [15,31] to formalize the relationship between
amortization of multiexponentiation of random indices and the amount of space
available to the adversary. We do this by making explicit the average-case lower
bounds for multiexponentiation, which were only stated (but not proven) in
[15,31] to be a constant term away from the worst-case lower bounds.

Note that the notion of average-case hardness requires an underlying prob-
ability distribution over which the input indices are sampled. Obviously, the
distribution of the sampled puzzle instances can affect the average-case bounds
if, for example, the sampler provides structured output with high probability.
Therefore, all results have to be taken with respect to the underlying distribution
of the inputs, which is in turn specified by the choice of sampling algorithm S.
Where this S is taken to be uniform (as in this work), the notion of average-case
hardness defaults to the traditional average-case lower bound results referenced
in the literature.

In order to make formal statements about the amortization resistance of
computing multiple NIPs, we need to show that there exists some sampling
algorithm SNIP outputting instance-witness pairs (ϕ,w) so that, on average
over its public coins, these output puzzle instances require a minimum number
of oracle calls each for computation of their corresponding proof π. The first step
towards this is to construct the equivalent multiexponentiation problem that the
above will reduce to. In the following, we restrict ourselves to the NIP of [30], in
which the valid output proof consists of 9 group elements of the form

∑κ
k=1 wkG

i
k

for i ∈ [9], wk ∈ [N] and an additional element
∑µ
m=1 g(w1, ..., wκ)mHm, where

g an m-dimensional n-variable polynomial encoding the instance’s witness and
Gi, Hm ∈ G.

Since the hardness of the above computation depends on the structure of
w and g, it becomes apparent that we need to restrict the types of predicates
that we are looking at. In subsequent sections, we make precise the following
construction: a circuit with an efficient sampler S such that (1) accepting witness
elements w1, ..., wκ ∈ [N] are randomly distributed, (2) for each valid instance
ϕ there exists only one valid w, and (3) for each valid w, there exists a unique
valid g. Note that (1) and (2) are properties of the predicate, while (3) requires a
stronger result on the NIP’s knowledge guarantees. We will show that predicates
satisfying (1) and (2) are enough to reduce the computation of a NIP from
[30] (which satisfies (3)) to a multiexponentiation problem (Definition 4) whose
amortization we can bound.

Definition 4. The (κ, µ)-length MultiExp function f : [N]κ → Gν of dimension
ν for bases {G(1)

i , ..., G
(ν−1)
i }κi=1, {G

(ν)
i }

µ
i=1, and function g : [N]κ → K ⊆ [N]µ

is

f(x1, ..., xκ) :=

(
κ∑
i=1

xiG
(1)
i , ...,

κ∑
i=1

xiG
(ν−1)
i ,

µ∑
i=1

g(x)iG
(ν)
i

)
,

where the xi are given by sampler S, based on its random coins.

6

In order to provide a reduction that exactly captures the average-case hard-
ness of the above problem, the structure of g becomes important. This requires
a more technical treatment, so here we work in the case where g is a weakly
collision-resistant map from the witness elements x = (x1, ..., xκ) to the values
(g(x)1, ..., g(x)µ) ∈ K ⊆ [N]µ. This defines a computationally unique correspon-
dence between witness elements and representations of µ-degree polynomials
with coefficients in [N]. We specifically require the mapping g : [N]κ → K ⊆ [N]µ

to be collision-resistant in each of its output coordinates, or that the following
probability is negligible for all PPT adversaries A:

Pr [∃i s.t. g(A(z))i = zi; z ← g(x), x←R [N]κ] ≈ 0,

where zi denotes the i-th coordinate of z. This is enough to provide multiexpo-
nentiation amortization bounds, which are given below for the case when κ = µ.
Note that the general case for µ > κ can also be calculated in the exact same
way, but has been omitted for simplicity.

Theorem 1. The (κ, κ)-length MultiExp function (c.f. Definition 4) of dimen-
sion ν over index size λ := log (N), group G with |G| = 2λ, and storage size q
is ϵ-amortization resistant with respect to the uniform sampler for all collision-
resistant g, and for large enough κ, λ, ν, q satisfies:

ϵ ≤ log (q) + o(1)

log (q) + log (κ) + log (ν) + log (λ)
.

We prove Theorem 1 in Appendix D. This amortization gain is unavoidable for
NIPs that reduce to multiexponentiation; such as by compilation with [22].

2.2 Amortization Resistance & Efficiency

We modify the DPS predicateΠ to ensure that most of the proof variables change
unpredictably with modifications of the nonce or state. This gives amortization
resistance in exchange for increasing the number of variables and constraints in
the predicate. The performance overhead originates from the need to commit to
state and ‘mask’ the computation, which can be expensive for large predicates.

The naive approach would be to isolate each of the different circuits in the
system and show that they can be modified to change unpredictably based on
some seed. The design challenge here is how to make this happen while conserv-
ing the proof’s correctness guarantees. For this, we ideally want to leverage a
property specific to our predicate in order to ‘mask’ the computations and treat
the proving system as a black box. We leverage the Pedersen hash function to
transform our predicate Π to an amortization resistant version in Section 4.3.

Committing to State Given some nonce n, the prover might only change a
part of the input in order to (re)check difficulty. This is an issue if the same nonce
can be used with many inputs (in our case, transactions), as an adversarial prover

7

would compute a proof and then only switch out a single transaction (or bit!),
rechecking difficulty with no expensive recomputation. Define ρ := PRFn(state)
that commits to state where PRF a pseudorandom function family. We need to
commit to all block transactions, ensuring that changing one transaction changes
ρ. This can be expensive if we exploit no information about the underlying
predicate, since PRF would have to commit to every single original variable.

Fortunately, for our predicate the input to PRF is small: we use ρ = PRFn(rt)
where rt the root of the new state and n the given nonce. Since this input
will anyways be computed as part of the protocol, we don’t actually suffer any
overhead apart from having to verify the above computation. Note that this is
actually constant in predicate size. In the GGM, we can replace the PRF by a
collision resistant hash function CRT instead, since the randomness of the group
encoding is sufficient for the witness elements to look random to an adversary.

Masking the Computation We can force unique changes to the Merkle path
updating the account if we require n to be part of the leaf: since a change in the
block (or nonce) would lead to a new n, all update paths need to be recomputed
if any transaction is changed. However, we also need to enforce change to the old
Merkle path checking account existence. This technique is thus not ideal, since
these paths do not depend on the current nonce (or state) at all, meaning that
around half our variables will remain the same, giving ϵ ≈ 1/2.

To get around this, we opt for a different approach. We ‘mask’ the input
variables toH by interaction with ρ (which also commits to n) and transform the
constraints of the hash function subcircuit CH into a new circuit that retains the
original Proof of Knowledge (PoK) guarantees by verifying the same underlying
computation. By the unpredictability of ρ and randomness of n, we hope to
achieve upper bounds for amortization resistance based on the security of the
CRT. In this case, the sampler would need to provide valid witnesses for CH of
the form w = (w1, ..., wm) whose encodings are indistinguishable from random,
given n sampled uniformly randomly and access to a multiplication oracle O for
a randomized encoding of some G.

3 Implications for Nakamoto Consensus

PoNW introduces two novel effects on the consensus protocol due to the fact
that checking a nonce (on the order of seconds to minutes) can now take a
significant fraction of the average block frequency (ten minutes in the case of
Bitcoin), whereas it was negligible for traditional PoW puzzles. We can evaluate
these effects assuming a single puzzle solution takes time τ to check (with the
mean block arrival time normalized to 1).

3.1 Quantization Effects

When τ becomes a significant fraction of the average block generation time
(τ ∼ 1), miners face a loss of efficiency as they will often be forced to discard

8

a partially-checked puzzle solution when a block is broadcast while checking
previous solutions. We prove the scale of this efficiency loss in a short theorem:

Theorem 2. A miner in a PoW protocol with puzzle checking time τ will discard
a fraction 1− τ

eτ−1 of their work due to newly broadcast solutions.

Note that as τ → 0 (fast puzzle checking time relative to block interval),
the fraction of wasted work drops to 0. This is why this effect has never been
considered in prior work. In the reverse direction, as τ → ∞ the fraction of
wasted work approaches 1. For τ = 1 (solutions take as long to check as the
mean block interval), the fraction of wasted work is e−2

e−1 ≈ 0.42, suggesting
that we should aim to keep the time (even for slow miners) to get a solution
significantly shorter than the mean block time.

3.2 Stubborn Mining and Collisions

Slow puzzle checking time also introduces a concern that miners might refuse to
stop working on a partially-checked solution (and hence discard partial work)
even if a valid solution is found and broadcast. These stubborn miners might
cause collisions in the blockchain (two blocks being found at the same height in
the chain). We can analyse a worst-case scenario in which all miners are syn-
chronized with identical proving time, in effect making all miners stubborn and
maximizing the probability of simultaneous solutions. If miners aren’t synchro-
nized, they may opt to finish their current effort after a block is found, but even
if all miners do so this reduces to the above case where all miners finish checking
a solution simultaneously. We call each synchronized period in which all miners
check a solution a round.

Theorem 3. The expected number of solutions in a synchronized mining round
is defined by a Poisson distribution with λ = τ . The proportion of rounds with
multiple solutions (of rounds with any solution) is upper bounded by τ/2.

By Theorem 3, our prototype unoptimized 100 second proving time (and 10
minute block time) would lead to collisions for fewer than 1

12 of blocks in the
worst case.

4 Design & Instantiation

4.1 Proof System & Predicate

Since we’ll be broadcasting each proof πi to the network, we would like them
to be quite small (ideally < 1kB). We also require that the size of πi does not
increase with i, ideally staying the same size after every state transition. With
these design choices in mind, we prototype our system using libsnark[34], a C++
library implementing the IVC system in [4] using the construction from [30]. This
is done using Succinct Non-Interactive Arguments of Knowledge (SNARKs) [3],
non-interactive proofs of knowledge with the additional property of succinctness:

9

producing constant-sized proofs that can be instantly verified. We can equiva-
lently consider ΠS as an arithmetic circuit CΠ , evaluating to 1 on some input
Bi if and only if Bi is a valid commitment to the output of UpdateState given
some transaction set t and Si−1. In our implementation, CΠ is a QAP.

The circuit is encoded over elliptic curve elements through vectors in Fp,
where the number of gates increases with the size of πi and the time required
to generate it. By manually designing a circuit CΠ , we minimize the number
of gates used and provide a deployable implementation. Note that the system
need also allow for recursive proof composition, or the capability of new proofs to
check the validity of previous proofs efficiently. Since this construction depends
on SNARKs over pairs of elliptic curves that form IVC-friendly cycles, we use
the same pair of non-supersingular curves of prime order as [4] with 80 bits of
security and field size log p ≈ 298.

4.2 Circuit Requirements

A tree depth of 32 for our implementation allows for 4.2 billion accounts. We
compare this to 32 million unique used wallets on the Bitcoin blockchain after
10 years of operation. This requires 32 ·4 = 128 hash checks for each transaction.
We use the circuits in libsnark to verify such proofs of inclusion and modification.

Pedersen Hashes Since it is desirable for H to be efficiently represented with
a low gate count, we opt for using Pedersen hashes [14]. We modify the Pedersen
hash to compute

∏D
i=1G

1−2xi
i where {xi}Di=1 is the bit representation of the

input x and {Gi}Di=1 is a set of primitive roots for an elliptic curve group E(Fp).
We encode each root as two field elements and, based on the sign of each input
xi, perform multiplication of an intermediate field variable c by each Gi to arrive
at the digest if the corresponding xi = 1. We use the same underlying elliptic
curve for the SNARK with |p| = 2298, which reduces in security to the elliptic
curve discrete-logarithm problem (ECDLP) at a security of 80 bits.

Signature Scheme We use Schnorr signatures [33] over an elliptic curve (EC),
based on the hardness of DLP. This choice is motivated by our desire to minimize
the size of the verifying circuit, since this has to be built inside CΠ . The Schnorr
verification circuit only requires two exponentiations, a hash computation, and
a comparison between scalars. The same curve from the IVC construction is also
used here, offering a security of 80 bits. Schnorr signatures use elliptic curve
elements as public keys, resulting in key sizes of 596 bits, or 298 + 1 = 299 bits
with point compression. Secret keys are sampled as random 298-bit strings.

4.3 Randomizing the Pedersen Hash

In addition to some input x of length n bits, our evaluation requires a pseu-
dorandom seed ρ ∈ {0, 1}n. Consider the following modification, which can be

10

thought of as masking the underlying evaluation by using two sets of input vari-
ables: HG(ρ)2 · HH(ρ) and xi for i ∈ [n], where HG(·) the evaluation of the
Pedersen function HG(x) =

∏n
i=1G

1−2xi
i .

The variable h0 = HG(ρ)2 · HH(ρ) forms the ‘starting point’ of the eval-
uation. In the beginning, the prover will have access to generator constants
{Hi, H

−1
i , G−2

i H−1
i , G2

iHi} for the specific instance of the problem. It would
then perform a 2-bit lookup based on xi and ρi, multiplying the intermediate
variable ci by one of the above. By carefully choosing these qi, we can design
the circuit in such a way that unpredictability based on the seed is retained by
all intermediate variables except the output y, which we ensure equals HG(x).

Algorithm 1 MaskedPedersen
Require: x, ρ ∈ {0, 1}n, G,H ∈ Gn

Ensure: y ∈ G
1: procedure CacheGenerators(ρ,G,H)
2: Parse {ρi}ni=1 ← ρ
3: Compute h← H(ρ,G), h2 ← H(ρ,H), h0 = h2 · h2

4: return h0, h
5: end procedure
6: procedure MaskedHash(x, ρ, h0, h)
7: Parse {xi}ni=1 ← x, {ρi}ni=1 ← ρ
8: Define q = {qi}ni=1, c = {ci}ni=0 and set c0 = h0

9: for i ≤ n do
10: if ρi = 0, xi = 0 then qi = H−1

i

11: else if ρi = 0, xi = 1 then qi = G−2
i ·H

−1
i

12: else if ρi = 1, xi = 0 then qi = G2
i ·Hi

13: else if ρi = 1, xi = 1 then qi = Hi

14: end if
15: ci = ci−1 · qi
16: end for
17: y = cn · h−1

18: return y
19: end procedure

Correctness follows from the following observation: at step 0, the variable
c0 = HH(ρ) · HG(ρ)2 = HG(ρ) ·

∏n
i=1G

1−2ρi
i ·H1−2ρi

i is initialized as the hash
of the seed. For all intermediate steps j < n, we have that cj = HG(ρ) ·(∏j

i=1G
1−2xi
i

)
·
(∏n

i=j+1G
1−2ρi
i H1−2ρi

i

)
. Finally, after the n-th bit has been

processed the final intermediate variable cn is equal to the Pedersen hash of
the original input x multiplied by (the unpredictable) HG(ρ). By multiplying
with HG(ρ)−1, we get HG(x). This follows easily from the fact that at ev-
ery step we are performing the following operation: ci = ci−1 · (Hi · 1[ρi, xi =
1] +H−1

i · 1[ρi, xi = 0] +G−2
i H−1

i · 1[ρi = 0, xi = 1] +G2
iHi · 1[ρi = 1, xi = 0]).

It can be quickly checked that this computation ensures the previous recursive
property when initialized with c0 = HH(ρ) · HG(ρ)2. By induction, this implies

11

Fig. 1. Left : The TwoBitGroupAddition and SymmetricGroupAddition circuits from top
to bottom respectively. Right : Layout of a single Merkle authentication path circuit,
with M = 3 evaluations of H on an n = 4-bit Pedersen hash. Ĝi = (Ĝx

i , Ĝ
y
i) =

Gi +Gi +Hi and H
′
(ρ) =

∏4
i=1 Ĝ

1−2ρi
i and e the identity.

that after the n-th bit, only HG(ρ) and the exponentiations due to the bits of x
remain in the output variable i.e. cn = HG(ρ) ·

∏n
i=1G

1−2xi
i .

We observe that in all cases where we know that the variable ai has small
support (when, for example, it is boolean ai ∈ {0, 1}), the prover can always
precompute once and use the same answers without performing exponentiations.
However, this is not a problem since all miners would know what the precom-
puted answers are from the very beginning and can incorporate them with a
small memory cost.

The problem with creating variables that become more and more ‘determin-
istic’ is that at some point their support becomes so small that an adversary will
be able to precompute some oracle queries. However, since the end value of the
sequence of variables {ci}ni=1 is h · HG(x) which is also unpredictable due to h,
it is not feasible to predict any index i ∈ [n] without violating the security of
the operation HG(ρ) = h even if HG(x) is previously known. Note that h can
be ‘offset’ by a random element I as h

′

i = h + Ii for each path i ∈ [N]. This
provides independence between authentication paths using the same nonce.

4.4 Security

Unique Witness Extraction We must restrict the proof systems used be-
cause certain constructions are inherently insecure: Groth16 [18] can easily be
re-randomized, for example, with only a few additional group multiplications.
We thus need a notion akin to non-malleability, ensuring that we cannot con-
struct proofs given access to previous valid proofs. To achieve this, we show that
Pinocchio [30] satisfies unique witness extractability. This property requires the
proof system to output proofs with unique encodings for each distinct statement-
witness pair, and hence rules out malleability.

12

Definition 5. Let NIP := (Setup,Prove,Verify,Simulate) denote a NIP for re-
lation R. Define the PPT algorithm A with extractor χA, AdvuweBG,R,A,χA

(λ) =
Pr[GuweBG,R,A,χA

(λ)], and GuweBG,R,A,χA
(λ) as:

Main GuweBG,R,A,χA
(λ)

(p,G1,G2,GT , e, g)← BG(1λ)
(crs, τ)← Setup(R)
(ϕ, π1, π2)← AO(crs)
(w1, w2)← χA(trA)
b1 ← (w1 = w2) ∪ (R(ϕ,w1) ̸= 1) ∪ (R(ϕ,w2) ̸= 1)
b2 ← Verify(crs, ϕ, π1) ∩ Verify(crs, ϕ, π2) ∩ ((ϕ, π1) ̸∈ Q) ∩ ((ϕ, π1) ̸∈ Q) ∩ (π1 ̸= π2)
Return b1 ∩ b2
O(ϕ)
π ← Simulate(crs, τ, ϕ)
Q = (ϕ, π) ∪Q
Return π

NIP is unique witness extractable if ∀ A ∃χA s.t. AdvuweBG,R,A,χA
(λ) ∈ negl(λ).

Theorem 4. Assume the q-PDH, 2q-SDH and d-PKE assumptions hold for q ≥
max (2d− 1, d+ 2). [30] satisfies unique witness extractability.

Single Witness Hardness The ability to resample witnesses for a provided
statement-witness pair can also be advantageous to an adversary, since an ‘easy’
witness could be found by repeated sampling. We follow the definition of 2-hard
instances in [13] and define single witness hard languages, for which it is hard
to find a new witness given an existing one.

Definition 6. Let RL be a relation, and L = {ϕ|∃w s.t. RL(ϕ,w) = 1} an NP
language. L is a hard single-witness language if:

1. Efficient Sampling: There exists a PPT sampler S(1λ) outputting a statement-
witness pair ⟨Sx,Sw⟩ with Sx ∈ {0, 1}λ and (Sx,Sw) ∈ RL.

2. Witness Intractability: For every PPT A there exists a negligible function
µ(·) such that:

Pr
[(
Sx(1λ),A(S(1λ), 1λ)

)
∈ RL,A(S(1λ), 1λ) ̸= Sw(1λ)

]
≤ µ(λ).

A relation whose statements are outputs of a CRT hash functionH defines a hard
single-witness language. We show this for L(HP) = {ϕ : ∃w s.t. HGP,|w|(w) = ϕ}
where HGP,n a weakly collision-resistant hash function.

We show that computing a [30] proof for the evaluation of MaskedHash (and
our DPS predicate) will take on average a similar number of queries as a suit-
ably parametrized MultiExp instance. We restrict to the case of outputs from a
sampler S which samples a ρ randomly and generates valid witnesses. Since we
are working in the GGM, the witness variables of the MaskedHash instance have
an encoding that is indistinguishable from random. Therefore, the amortization
bounds of Theorem 1 apply.

13

Theorem 5. There exists a sampler S and QAP R evaluating N parallel in-
stances of k-bit inputs of MaskedHash for which the [30] prover and the (4N(k+
1), 8N(k + 1) + 2k)-length MultiExp problem of dimension 10 are equivalent up
to constant terms with respect to multiplicative hardness.

The vast majority of the constraints and variables in the predicate of the
designed system are hash evaluations, so Theorem 5 can be used to show that
there exists a proof system verifying state transitions for the DPS with bounded
amortization-resistance guarantees. This is because the DPS predicate spends
the vast majority of its time computing a proof whose hardness can be bounded
by Theorem 5, since it is a sequence of iterated Pedersen hashes over a unique
simulation extractable NIP.

Corollary 1. The DPS in Section B.3 with block size T , state tree depth d, and
index size λ admits a Proof of Necessary Work that is ϵ-amortization resistant
w.r.t. a multiplication oracle and for which:

ϵ ⪅
log (q)

log (q) + log (dTλ) + log (λ)
,

where q is memory size measured in proof elements.

4.5 Performance

We construct the DPS based on the above specifications and investigate its
running time and memory consumption. Results are displayed in Table 1. Our
benchmark machine was an Amazon Web Services (AWS) c5.24xlarge instance,
with 96 vCPUs and 192GiB of RAM. The security properties of the DPS are
based on the guarantee of Π-compliance provided by IVC. It is apparent that
setup and proving times dominate both the running time and memory consump-
tion in the protocol. Setup takes place once by a trusted third-party and hence
is less critical for day-to-day system performance.

The prover is run by the miners, or full nodes. These generate PoW solutions
repeatedly and would compute proof instances for many input nonces. Thus,
larger storage requirements (∼ 5.42GB key sizes) could be easily met by these
nodes, as could the need for more parallelism and better computing power to
bring down the proving rate.

We normalize the block time to achieve τ = 1/3 in the sense of Theorem 2
for a proof including 30 transactions. This gives us that a miner will discard in
expectation 15.59% of their work for an efficiency of ∼ 84% if all miners operated
based on the above benchmarks. Theorem 3 then gives an upper bound on the
block orphan rate (or likelihood of block collisions) of 16.65%. Since we are
keeping block times constant at 10 minutes, we note that any improvements
in SNARK proof generation times will correspondingly decrease the amount
of wasted work and orphan rate. Moreover, this does not depend on the way
that the proofs are generated: distributed techniques among many participants
(such as [37]) would also benefit efficiency through the corresponding decrease
of average proof time.

14

Txs Constraints Generator Prover Verifier Size
Avg (s) Avg (s) Avg (ms) pk (GB) vk (kB) π (B)

3 3658281 53.99 24.57

16.0

0.74

0.76 373

10 10071527 161.24 88.14 1.96

20 19233307 268.93 185.10 3.74

30 28395087 354.83 198.61 5.61

40 37556867 485.52 286.50 7.15

50 46718647 570.09 358.95 9.01

Table 1. Prototype Times and Key Sizes for Predicates verifying different numbers
of transactions: Average running times for setup G, prover P and verifier V over 10
iterations are shown alongside proving/verification key and proof sizes.

5 Related Work

Several proposals have aimed to reduce verification costs for light clients; Chatzi-
giannis et al. provide a survey [10]. Most relevant to our work are Vault [26] and
MimbleWimble [32] which speed up verifying transaction history and NIPoPoW
[23] and FlyClient [9] which speed up verifying consensus. We summarize these
results in Table 2. None of these proposals achieve constant-time verification,
though they require significantly less work from provers.

Succinct blockchains, which provide optimal O(1) bandwidth and computa-
tion costs to verify both history and consensus, were proposed in 2020, simul-
taneously by this work and the Mina project [5] (formerly Coda). Mina takes a
similar high-level approach, encoding state transitions in a recursive proof system
for asymptotically optimal verification time. The two proposals vary in a num-
ber of technical details, but the the main conceptual differences lie in our choice
of consensus protocol. Mina implements proof-of-stake consensus, specifically a
variant of Ouroboros[25] designed for succinct proofs, but does not incentivize
efficient proof generation. By contrast, we implement a PoW variant specifically
designed to incentivize proving efficiency.

Subsequent work has provided novel and efficient constructions for succinct
blockchains, though not focused directly on prover incentivization. Chen et
al. [11] propose a general framework for succinct blockchains over arbitrary tran-
sition functions, alongside benchmarks using the Marlin [12] proof system. Hegde
et al. [19] tackle a related but critical problem: that of minimizing the total mem-
ory requirements of full nodes. Vesely et al. [36] propose Plumo, which leverages
offline signature aggregation to design a cost and latency optimized light client
for the Celo [36] blockchain. Abusalah et al. [1] propose SNACKS, a formal
framework that adds knowledge extraction guarantees to Proofs of Sequential
Work. We note that these contributions are orthogonal to our main focus of in-
centivizing efficient proving, and all could be incorporated in a practical PoNW
implementation.

15

References

1. Abusalah, H., Fuchsbauer, G., Gaži, P., Klein, K.: SNACKs: Leveraging Proofs of
Sequential Work for Blockchain Light Clients. Cryptology ePrint Archive, Paper
2022/240 (2022)

2. Announcing the ZPrize Competition. https://www.aleo.org/post/
announcing-the-zprize-competition (2022), accessed: 2022-08-09

3. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von Neumann architecture. In: USENIX Security (2014)

4. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Scalable zero knowledge via
cycles of elliptic curves. Algorithmica 79(4), 1102–1160 (2017)

5. Bonneau, J., Meckler, I., Rao, V., Shapiro, E.: Mina: Decentralized cryptocurrency
at scale. https://docs.minaprotocol.com/static/pdf/technicalWhitepaper.
pdf (2020), accessed: 2022-08-09

6. Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: Zexe: Enabling
decentralized private computation. Cryptology ePrint Archive, Report 2018/962
(2018)

7. Buterin, V.: Ethereum: A next-generation smart contract and decentralized appli-
cation platform (2014), https://github.com/ethereum/wiki/wiki/White-Paper,
accessed: 2016-08-22

8. Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: Towards privacy in a smart
contract world. Cryptology ePrint Archive, Report 2019/191 (2019)

9. Bünz, B., Kiffer, L., Luu, L., Zamani, M.: Flyclient: Super-Light Clients for Cryp-
tocurrencies. Cryptology ePrint Archive, Report 2019/226 (2019)

10. Chatzigiannis, P., Baldimtsi, F., Chalkias, K.: SoK: Blockchain Light Clients. Cryp-
tology ePrint Archive, Paper 2021/1657 (2021)

11. Chen, W., Chiesa, A., Dauterman, E., Ward, N.P.: Reducing participation costs
via incremental verification for ledger systems. Cryptology ePrint Archive, Paper
2020/1522 (2020)

12. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, P., Ward, N.: Marlin: Preprocess-
ing zksnarks with universal and updatable srs. Cryptology ePrint Archive, Paper
2019/1047 (2019), https://eprint.iacr.org/2019/1047, https://eprint.iacr.
org/2019/1047

13. Dahari, H., Lindell, Y.: Deterministic-prover zero-knowledge proofs. Cryptology
ePrint Archive, Paper 2020/141 (2020)

14. Damgård, I.B., Pedersen, T.P., Pfitzmann, B.: On the existence of statistically
hiding bit commitment schemes and fail-stop signatures. In: CRYPTO (1993)

15. Erdös, P.: Remarks on number theory III. On addition chains. Acta Arithmetica
6 (1960)

16. Fisch, B., Bonneau, J., Greco, N., Benet, J.: Scaling proof-of-replication for Filecoin
mining. Tech. rep., Stanford University (2018)

17. Gordon, D.M.: A survey of fast exponentiation methods. Journal of Algorithms
27(1) (1998)

18. Groth, J.: On the size of pairing-based non-interactive arguments. In: Eurocrypt
(2016)

19. Hegde, P., Streit, R., Georghiades, Y., Ganesh, C., Vishwanath, S.: Achieving al-
most all blockchain functionalities with polylogarithmic storage. arXiv preprint
arXiv:2207.05869 (2022)

20. Henry, R.: Pippenger’s multiproduct and multiexponentiation algorithms. Tech.
rep., University of Waterloo (2010)

16

https://www.aleo.org/post/announcing-the-zprize-competition
https://www.aleo.org/post/announcing-the-zprize-competition
https://docs.minaprotocol.com/static/pdf/technicalWhitepaper.pdf
https://docs.minaprotocol.com/static/pdf/technicalWhitepaper.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://eprint.iacr.org/2019/1047
https://eprint.iacr.org/2019/1047
https://eprint.iacr.org/2019/1047

21. Kamvar, S., Olszewski, M., Reinsberg, R.: Celo: A multi-asset cryptographic pro-
tocol for decentralized social payments. https://celo.org/papers/whitepaper
(2019)

22. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Asiacrypt (2010)

23. Kiayias, A., Lamprou, N., Stouka, A.P.: Proofs of proofs of work with sublinear
complexity. In: Financial Crypto (2016)

24. Kiayias, A., Miller, A., Zindros, D.: Non-interactive proofs of proof-of-work. IACR
Cryptology ePrint Archive 2017, 963 (2017)

25. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A provably secure
proof-of-stake blockchain protocol. In: CRYPTO (2017)

26. Leung, D., Suhl, A., Gilad, Y., Zeldovich, N.: Vault: Fast bootstrapping for the
algorand cryptocurrency. NDSS (2018)

27. Maurer, U.: Abstract models of computation in cryptography. In: IMA Interna-
tional Conference on Cryptography and Coding (2005)

28. Miller, A., Kosba, A., Katz, J., Shi, E.: Nonoutsourceable scratch-off puzzles to
discourage bitcoin mining coalitions. In: ACM CCS (2015)

29. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. http://bitcoin.
org/bitcoin.pdf (2008)

30. Parno, B., Gentry, C., Howell, J., Raykova, M.: Pinocchio: Nearly Practical Veri-
fiable Computation. Cryptology ePrint Archive, Report 2013/279 (2013)

31. Pippenger, N.: On the evaluation of powers and monomials. SIAM Journal on
Computing 9(2) (1980)

32. Poelstra, A.: Mimblewimble. https://download.wpsoftware.net/bitcoin/
wizardry/mimblewimble.pdf (2016), accessed: 2022-08-09

33. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Eurocrypt
(1989)

34. SCIPRLab: libsnark: a c++ library for zksnark proofs. https://github.com/
scipr-lab/libsnark (2017)

35. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Euro-
crypt (1997)

36. Vesely, P., Gurkan, K., Straka, M., Gabizon, A., Jovanovic, P., Konstantopoulos,
G., Oines, A., Olszewski, M., Tromer, E.: Plumo: An ultralight blockchain client.
Cryptology ePrint Archive, Paper 2021/1361 (2021)

37. Wu, H., Zheng, W., Chiesa, A., Popa, R.A., Stoica, I.: DIZK: A Distributed Zero
Knowledge Proof System. In: USENIX Security (2018)

38. Zhandry, M.: To label, or not to label (in generic groups). Cryptology ePrint
Archive, Paper 2022/226 (2022)

A Model Definitions

We model the processing of payments using a state machine. A state machine is
defined by an initial state, a set of possible states, and a state transition function
which governs the transition from one state to another given some information
as input. Moreover, we work under the assumption that this is a replicated state
machine (RSM), with local copies of the state machine in each node so as to
achieve fault tolerance.

We define our payment system state machine as follows: we have a set of
participants who share a broadcast communication channel, and who may join

17

https://celo.org/papers/whitepaper
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark

or leave the system at will. There are two types of nodes we concern ourselves
with here: miners and light clients.

Miners: A mining (or full) node has access to the current state Si ∈ S at
timestep i, performing any consensus-specific computation and verifying state
transitions.

Light Clients: Light clients (or end-users) can issue transactions t ∈ T and
verify their inclusion, but do not need to keep mutable state.

We investigate how the system transitions from Si to Si+1 while retaining con-
sensus over state. Transitions between states happen through the processing of
transactions by a model-specific transition function NewState. We also require
a transition validation function VerifyState that ensures the state update was
done correctly. By defining the notion of validity between state transitions, we
differentiate between legitimate and illegitimate transactions and only permit
processing of the former. Moreover, we require that such tuples are also inter-
nally consistent, namely that all new states are correctly validated. For example,
the Bitcoin and Ethereum protocols both define their own transition functions
between blocks (states) and each one is based on its own notion of transaction
validity.

Definition 7. A tuple of efficiently computable algorithms (VerifyState,NewState)
is considered a transition tuple if the following conditions hold:

– VerifyState : 2T × S × S × {0, 1}∗ →Yes/No
– NewState : 2T × S × {0, 1}∗ → S

and moreover we consider such a tuple consistent if ∀Si,Si+1 ∈ S, t ∈ 2T :

∃zi s.t. VerifyState(t,Si,Si+1, zi) = Yes ⇐⇒ NewState(t,Si) = Si+1.

Σn = (Si, ti, zi)ni=1 is valid with respect to (VerifyState,NewState) if ∀i ∈ [n]
VerifyState(ti,Si,Si+1, zi+1) = Yes, or equivalently NewState(ti,Si) = Si+1.

The above notion can be used to define the minimal semantics for a model
DPS, where 2T refers to the power set of T . Note that the above does not
imply deterministic state transitions. In addition, we associate the monetary
value c ∈ N of each account with user address values z ∈ Z, of which there can
be multiple in a given state. This provides us with all the ingredients needed to
define the fundamental system.

We require a theoretical model for a distributed payment system (DPS), de-
fined as a tuple of algorithms necessary for minimal payment functionality. Many
subsequent and concurrent works have focused on developing various DPS archi-
tectures, each depending on a different set of trade-offs and desirable protocol
properties. For us, the structure of the DPS is not the main goal, so we opt for
working with a minimal design. We restrict ourselves to a simple construction

18

based on a standard approach,. In terms of security, the system needs to provide
both completeness and correctness guarantees. This requires that the protocol
should guarantee that state transitions considered correct by VerifyState will
not be rejected by compliant nodes. Similarly, satisfying correctness requires
that transactions and state transitions that are invalid should not be accepted
by compliant nodes. These definitions are constructed in the usual way in the
auxiliary supportive materials.

Our model can easily be adapted to describe existing blockchain-based pay-
ment systems. We illustrate this informally for Bitcoin (in its original form) to
provide intuition for what the essential components of a distributed payment
system are.

Bitcoin: The Bitcoin protocol is a UTXO-based payment clearing system, for
which a valid block update includes a set of valid ordered transactions and
specific block header information. The components of the RSM are illustrated
below:

– State: The list of all UTXOs.
– Witness: Not required; validation happens by inspection of the ledger.
– NewState: Generation of a new block.
– VerifyState: Validity of a block transition requires:
• Verifying all UTXOs exist in state.
• Verifying that the header is well formed.
• Checking the nonce satisfies PoW.
• Ensuring all transactions are valid.

A similar treatment would allow us to characterize Ethereum using the same
basic components. This paradigm also makes obvious that, in order to verify the
state of the whole system without any external information, we would need to
iteratively validate each state transition. We use the witness zi to provide ‘hints’
to the validation function, which we will demonstrate later allows us to construct
protocols tailored for much more efficient state verification.

B Succinct Verification

We are interested in working with RSMs that facilitate state verification, so we
will also define the notion of “succinct verifiability”. This restricts RSMs to be
succinctly verifiable if the computational and memory resources they require
to perform verification of the RSM’s current state are small. Since in practice
the size of the state of some RSM is extremely large (and grows with the num-
ber of processed transactions and blocks), any sufficiently efficient verification
algorithm will need to take as input a “succinct representation” of the current
state transition, while still being able to verify it. Otherwise, verification would
require parsing Si,Si+1, which is prohibitively expensive. This is modelled as a
function ψ : 2T × S × S → C, which provides a commitment c ∈ C that suffices
for verification.

19

Definition 8. An RSM Σn with n state transitions is a tuple Σn = (Si, ti, zi)ni=1

of states Si ∈ S, sets of transactions ti ∈ 2T (where T is the set of possible trans-
actions), and witnesses zi ∈ {0, 1}∗. We denote Sn as the current state of Σn and
S0 as its genesis state. Moreover, a valid RSM Σn = (Si, ti, zi)ni=1 with respect to
a consistent transition tuple (VerifyState,NewState) is considered succinctly ver-
ifiable if there exist ψ : 2T ×S×S → C and SuccinctVerify : C×{0, 1}∗ →Yes/No
such that SuccinctVerify has O(1) time and size complexity over n, |Si|, |zi| and:

Pr (SuccinctVerify(ψ(t,Si,Si+1), zi) ̸= VerifyState(t,Si,Si+1, zi)) ≈ 0,

over the random coins of SuccinctVerify and ψ.

Here we demonstrate a specific instantiation of a DPS for which we define
a transition function tailored to fast state verification by stateless clients. To
achieve this, we leverage the capabilities of IVC systems and construct a succinct
proof of state validity to represent each state transition. Since we will be basing
our implementation of the proofs on SNARKs, we design the transition function
so as to minimize SNARK proof sizes. This is critical for efficiency and feasibility.

Following the longest chain quality update rule, our system updates the qual-
ity q of solving a PoW puzzle according to the depth of the chain. We are thus
required to include (and commit to) qi and ni with every proof, where qi is the
quality of state Si and ni the associated nonce. This is because these quantities
are needed by miners in order to follow the longest chain and achieve consensus.

Each participant in our system has a public and secret key that they generate
when they first join the network. The participants use these keys to digitally sign
transactions and verify other participants’ signatures. The state Si contains the
distribution of money between the participants (stored as a tree), state quality
and a nonce corresponding to the most recent PoW. We also distinguish between
the i-th block, which in our case will be represented by a proof πi that the i-
th state transition is valid along with the set of transactions ti corresponding
to the transition, and commitments to state, which we denote by Bi and use
for client verification. We require an account-based system (like Ethereum but
not Bitcoin) and keep track of state with an ‘Account Tree’ of all account-value
pairs. These building blocks are:

Account Tree: We use a Merkle tree construction with a compressible Collision
Resistant (CRT) hash function H : {0, 1}2λ → {0, 1}λ. We assume a fixed size
tree T with height h throughout.

State: We denote Si the state after the i-th update:

– Account tree T i with leaves the lexicographically-ordered (by address) ac-
counts in state.

– The block number i, quality qi, and nonce ni.

State Commitment: Set Bi as the commitment to Si:

– The root rti of the Account tree T i in Si.

20

– The block number i, quality qi, and nonce ni.

Protocol Initialization: Initially all accounts in the Account tree are set to
null. In every transition, the tree allows the following modifications:

– Account Initialization: Set the public key to a non-null value and initialize the
balance and the nonce. An account with a non-null public key is considered
initialized. An account can be initialized only once. Uninitialized accounts
have null public key.

– Balance Update: Modify account balance bal, ensuring money conservation.
– Nonce Update: Modify account nonce n to that of the current block.

We denote the initial state of the system (or “genesis state”) by S0; this is
agreed to by an out-of-band process. For example, a system might start with all
addresses having a balance of zero or it might pre-populate some accounts with
non-zero balance (colloquially known as “pre-mining”). Note that in the initial
state, the Account tree is a full tree and contains one leaf/account for every
address that can exist in the state. The genesis state can contain initialized and
uninitialized accounts. All preliminary data structures have been included in the
auxiliary supportive material.

B.1 State Transition Semantics

Below we define our semantics used for transaction and state transition validity.
Verifying Transactions: VerifyTx(t, T i) →Yes/No takes as input a trans-
action t and an Account tree T i, outputting Yes/No (1 or 0). A transaction is
considered valid if:

1. Sender and receiver are legitimate accounts in T i.
2. Amount transferred is not more than sender’s balance.
3. Signature authenticates over the sender’s public key.
4. Sender and receiver accounts in the Account tree are updated correctly.
5. Recipient and Account public keys match, or the address is uninitialized.

Updating System State: UpdateState(Si, t, n)→ Si+1 is a procedure that
takes as input a state Si, am ordered set of transactions t with |t| = N and a
nonce n. It outputs the next state Si+1 and a witness w of objects proving the
update was done correctly. A transition is valid if:

1. All transactions in T are valid.
2. The previous state has performed PoW.
3. Only last transaction tN is of coinbase type.
4. Each transaction builds on top of the previous one; the first builds on the

previous root.

21

B.2 State Transition as an NP statement

In order to instantiate a DPS that is capable of verifying a given state transition
function, we encode the transition function ValidState as a compliance predicate
ΠS . With every state transition, we include a proof that the transition was ΠS

compliant. This is done by verifying the transition from the previous state and
producing an attesting witness w in the process. In this context, we are interested
in verifying the transition between two states of the Account tree by processing
transactions between them into the system. This is achieved by tracking changes
to the root rti of the Account tree after the input of each transaction.

We capture all requirements for transaction, PoW and state validity in an
NP language that onl y accepts commitments of the form Bi = (rti, i, qi, ni)
that build ‘correctly’ on top of a previous state. At a high level, the elements
of this language are state commitments that, given some previous state’s root,
have only processed valid transactions.

Compliance Predicate Given input Bi+1 = (rti+1, i+1, qi+1, ni+1), the com-
pliance predicate ΠS evaluates to 1 if and only if all of the following are satisfied:

1. Exists state Si satisfying PoW with nonce ni and quality qi.
2. Exists a tuple of ordered transactions t with |t| = N . These transactions

need to be sequentially valid with respect to Si.
3. UpdateState(Si, T , ni) = Si+1.

We use the compliance predicate ΠS to design an IVC system consisting of
algorithms (G,P,V), where each message zi is commitment Bi.

B.3 DPS Specification

Here we define how the system transitions from Si → Si+1. Algorithm 1 generates
a new state and associated proof of compliance, along with a nonce certifying
that the system performed PoW. When validating, we check that the new state
Si+1 is a valid next state for the system by being (a) ΠS compliant and (b)
providing PoW. Note that the validation only requires the root of the Account
tree corresponding to Si, thus making it efficient enough for light clients. A
detailed specification alongside security definitions and proofs can be found in
the attached auxiliary supportive material.

When updating the state of the system, each participating miner receives πi+1

and ti+1. This allows them to update their own state to Si+1 and begin mining
again. In Table 2, we provide a comparison of the asymptotic time and memory
requirements of existing SPV protocols implementing transaction and/or PoW
verification. Given that transaction volume and chain length both grow linearly
over time, we can ideally provide verification that is constant with respect to
both.

22

Algorithm 2 NewState
Require: pp, T ,Si, πi

Ensure: Si+1, πi+1

1: procedure NewState(pp, T ,Si, πi)
2: if V(vk,Si, πi) = 0 then return 0
3: end if
4: while H(πi+1) > d do
5: Pick ni+1 uniformly at random
6: (Si+1, w)← UpdateState(Si, T , ni+1)
7: πi+1 ← P(pk,Si+1, T ,Si, πi, w)
8: end while
9: return (Si+1, πi+1)

10: end procedure

C Proof of Theorems 2 and 3

Proof. Assume that a blocks are found in a Poisson process with a mean of
λ = 1 and an individual miner can check one puzzle solution in time τ . Consider
the expected number of blocks this individual miner is able to check before the
network broadcasts a solution. A block will be found by the network in less than
time τ with probability: ∫ τ

0

e−xdx = 1− eτ .

In this case, the miner will not even finish checking a single block. If the
network does not broadcast a block within time τ , the miner will check at least
one block. The Poisson process then repeats, since it is memoryless. So the
expected number of blocks checked is:

Eblocks = (1− eτ) · 0 + e−τ · (1 + Eblocks)

eτ · Eblocks = 1 + EblocksEblocks =
1

eτ − 1
.

If no partially-checked solutions were wasted, the miner would always expect
to check 1

τ solutions. Thus, the fraction of wasted work is:

1−
1

eτ−1
1
τ

= 1− τ

eτ − 1
.

Proof. Since solutions are Poisson random variables:

Pr [collision] = [1− Po(1, τ)/(1− Po(0, τ))] ≤ τ/2.

23

D Proofs of Amortization Resistance

We borrow notation from [31] and parametrize with q input indices, p outputs
and maximum index size 2λ. Where not specified, H = pqλ. Let L(y) be the
minimum number of multiplications to compute y = (y1, ..., yp) with yi ∈ [2λ]q

and [2λ] = {1, ..., 2λ− 1} from the inputs and unit vectors and L(p, q, 2λ) be the
maximum over all of them.

Lemma 1. For any value of c ≤ L(p, q,N), there are at most:(
H2

c

)c
2q+1ec(q + 1)2O(1),

addition chains of length at most c.

Lemma 2. Define H := κqνλ, ϕ(q, κ, ν, λ) :=

qκν log (qκν) + κ log (H) + q + log (q + 1) + 1,

and fix µ := δH, corresponding to:

cδ :=
(1− δ)H − ϕ(q, κ, ν, λ)

log (H)− log (e) + log (µ) + log (1/δ)
.

For the (κ, κ)-length MultiExp function of dimension ν for collision resistant
g:

Pr
x∈R[2λ]κ×q,G∈RGκ×ν

[L(f(x1), ..., f(xq)) ≤ cδ] ≤
(
1

2

)µ
.

Proof. Write G(j)
k = rjkG. As the xi ∈ [2λ]κ and rjk ∈ [2λ] are sampled ran-

domly, the values xikG
(j)
k = xikrjkG for i ∈ [q], j ∈ [ν−1], k ∈ [κ] will be distinct

w.h.p. The κ · q values g(xi)k · rνkG will also be distinct w.h.p. as g is collision
resistant in each of its κ output coordinates.

Let M be the q×(κν) sized matrix with these values as entries. As each entry
is an element in [2λ], the number of matrices M with qκν distinct elements is:(

2λ

qκν

)
≥ 2λqκν

(qκν)qκν
,

and to each M there corresponds a unique matrix F = (f(x1), ..., f(xq)) with
dimension q× ν, where the κ products over random bases for each xi have been
computed. Note that L(F) = L(M) + κ− 1.

We can thus upper bound the minimal addition chain size L(F) using L(M)
and the number of matrices M :

Pr
x∈R[2λ]κ×q,G∈RGκ×ν

[L(F) ≤ c] ≤ |{z : L(z) ≤ c}|
2H−qκν log (qκν)

.

24

The numerator is upper bounded by Lemma 1 and the fact that a single chain
corresponds to at most Hκ matrices, giving:

Pr
x∈R[2λ]κ×q,G∈RGκ×ν

[L(F) ≤ c] ≤
(
1

2

)H−ψ(c)

,

where ψ(c) := c(2 logH + log e) + ϕ(q, κ, ν, λ)− c log (c).
Suffices to show that for c ≤ cδ, ψ(c) ≤ (1− δ)H. Since ψ(c) is increasing for

c ≤ L(κ, νq, 2λ), required to show that ρ ≥ cδ for ψ(ρ) = (1− δ)H :

ρ(2 logH + log e) + ϕ(q, κ, ν, λ) ≥ (1− δ) ·H,

log ρ ≥ log ((1− δ) ·H − ϕ(q, κ, ν, λ))− log (2 logH − log (e)),

∴ ρ ≥ (1− δ)H − ϕ(q, κ, ν, λ)
logH − log (e) + log (µ) + log (1/δ)

,

since µ = δH.

Corollary 2. Fix δ > 0 and let ψ(ρδ)− (1− δ) ·H = 0.

E[L(f(x1), ..., f(xq))] ≥ ρδ · (1− 2−δH).

Proof. By Markov’s inequality:

Pr[L(f(x1), ..., f(xq)) ≥ ρδ] · ρδ ≤ E[L(x)],

(1− Pr[L(f(x1), ..., f(xq)) < ρδ]) · ρδ ≤ E[L(f(x1), ..., f(xq))].

Proof (Proof of Theorem 1). Required to compute q iterations of the MultiExp
function. Each iteration includes ν multiproducts over random bases, with the
indices also sampled from [2λ].

Using c oracle queries to do this corresponds to knowledge of an addition
chain of length c containing all of F = (f(x1), ..., f(xq)) with xi ∈ [2λ]κ. There-
fore, the probability that we compute F for x ∈R [2λ]κ×q with less than c queries
is upper bounded by the probability that L(F) ≤ c.

Fix δ > 0. Lemma 2 states that ∃cδ s.t. this probability is negligible in
µ := δκνqλ for c ≤ cδ. One function computation of dimension ν with κ inputs
has an upper bound on the expected number of multiplications of:

min (κ, ν) · λ+
κνλ

log (κνλ)
· (1 + o(1)).

Corollary 2 implies that:

ϵ ≤ 1− q−1 ·
(
min (κ, ν) · λ+

κνλ

log (κνλ)
· (1 + o(1))

)−1

· (1− 2−δκνqλ) · cδ

≤ log (q) + δ log(κνλ) + o(1)

log (κνqλ)
≤ log (q) + o(1)

log (κνqλ)
,

where we have taken δ ≤ 1/ log (κνλ).

25

Proof (Proof of Theorem 4). We know that the NIP has a PKE extractor from its
security proof and so A can extract two witnesses almost surely using extractor
χPKEA . If the polynomials are distinct, so are their witnesses. This follows directly
from the fact that, since π1 ̸= π2, either (1) one of ui(X), vi(X), wi(X) differs
in one of the proofs, or (2) the extracted witnesses differ. Since the predicate is
the same, it follows that the witnesses must differ.

Lemma 3. Let HP = {HGP,λ}λ∈N+ be a family of efficiently computable func-
tions for which each HGP,λ : {0, 1}λ → G is weakly collision-resistant. L(HP) is
hard single-witness.

Proof (Proof of Lemma 3). Define S in the natural way: fix λ ∈ N+ and define
S to randomly sample an element x ∈ {0, 1}λ, outputting (HP,λ(x), x). The
sampler is efficient by the efficiency of HP,λ(x), and (HP,λ(x), x) ∈ RL(HP,λ)}
by definition. Witness intractability (WI) follows from the collision resistance of
HP,λ on constant-size inputs. If some A exists that violates WI, then running S
on 1λ and then A on S(1λ) and 1λ, we non-negligibly find a collision in HGP,λ.

Proof (Proof of Theorem 5). The MaskedHash QAP has 4N(k+1) intermediate
witness variables (and 8N(k+1)+ 2k constraints) which admits witnesses from
a sampler S where the seed ρ is uniformly random and so all witness variables
(with full support) also look random by the randomness of the group encoding.
This is as the intermediate values are distinct powers of a group element that
is random due to ρ and the independence of the Ij index elements. By unique
witness extractability and single witness hardness of CRT functions, all valid
witnesses have a unique encoding and hence a unique witness polynomial h.

We start with ℓ instances of N k-bit hash evaluations from S, and require ℓ
valid proofs. We reduce to the 4N(k+1)-length MultiExp problem for ℓ instances
and g equal to the function evaluating the representation of h given the witness
elements. We provide ℓ of the 4N(k + 1) intermediate witness variables and the
corresponding 9 sets of bases to the MultiExp function. The representation of h
will be unique w.r.t. the witness (since the instance is single witness hard) and
thus look random due to the inputs. Note that µ = 8N(k + 1) + 2k. We finally
perform a linear in ℓ number of multiplications to add any witness variables
that were not included (i.e. not randomly distributed). Since the MultiExp index
distributions are also random, a proof verifies iff the MultiExp solution is valid.

Conversely, given ℓ (4N(k + 1), 8N(k + 1) + 2k)-length MultiExp instances
of dimension 10 with inputs and bases sampled from the QAP’s sampler and
proving key respectively, we reduce to computing ℓ proofs for N k-bit hash
evaluations. This is because the unassigned witness variables can be discerned
from the auxiliary input to g, which comes from the QAP sampler. By the
uniqueness of the proof’s encoding, the set of ℓ valid proofs will have to equal the
MultiExp instances after a linear in ℓ number of operations to ‘undo’ products
by any of the additional variables.

26

E Comparison to light client solutions

Table 2 provides a comparison between the asymptotic efficiency of this work
(succinct blockchains) and lightweight proposals.

Technique Tx Verif. PoW Verif. Memory

Bitcoin [29]/Ethereum [7] Θ(t) Θ(h) Θ(h+ t)

Mimblewimble [32] Θ(u) = O(t) Θ(h) O(log4(h))

NIPoPoW [24] Θ(t) polylog (h) log h · (log t+ log log h)

FlyClient [9] Θ(t) O(log2 h) O(log2 h)

Succinct Blockchains O(1) O(1) O(1)

Table 2. Previous Work on Light-Client Verification: Asymptotic state and PoW ver-
ification times for clients verifying t transactions in h Blocks

27

	Proof of Necessary Work: Succinct State Verification with Fairness Guarantees

