
Short Paper: Estimating Patch Propagation Times
across Blockchain Forks

Sébastien Andreina1, Lorenzo Alluminio2, Giorgia Azzurra Marson1, and Ghassan Karame3

1 NEC Labs Europe {sebastien.andreina,giorgia.marson}@neclab.eu
2 Clearmatics, lorenzo.alluminio@clearmatics.com

3 Ruhr-Universität Bochum, ghassan@karame.org

Abstract. The wide success of Bitcoin has led to a huge surge of alternative cryp-
tocurrencies (altcoins). Most altcoins essentially fork Bitcoin’s code with minor mod-
ifications, such as the number of coins to be minted, the block size, and the block
generation time. In this paper, we take a closer look at Bitcoin forks from the perspec-
tive of vulnerability patching. By mining data retrieved from the GitHub repositories of
various altcoin projects, we estimate the time it took to propagate relevant patches from
Bitcoin to the altcoins. We find that, while the Bitcoin development community is quite
active in fixing security flaws of Bitcoin’s code base, forked cryptocurrencies are not
as rigorous in patching the same vulnerabilities (inherited from Bitcoin). In some cases,
we observe that even critical vulnerabilities, discovered and fixed within the Bitcoin
community, have been addressed by the altcoins tens of months after disclosure.

1 Introduction
The wide success of Bitcoin has led to an explosion in the number of so-called “altcoins”,
i.e., cryptocurrencies designed as a fork of the Bitcoin-core code base. Altcoins exhibit minor
differences to Bitcoin, e.g., some altcoins feature a different block-generation time (e.g., Doge-
coin and Litecoin), other use a different hash function (e.g., Litecoin and Namecoin), or impose
a different limit on the supply amount (e.g., Dogecoin, Litecoin). Despite these subtle differ-
ences, most altcoins share—to a large extent—the same technical foundations of Bitcoin. In the
past decade, research has shown that Bitcoin (and many of its descendants) are vulnerable to a
wide variety of attacks [15]. However, owing to strong development support, the Bitcoin-core
software is routinely monitored and promptly patched (even including research results). Early
studies about the security of proof-of-work blockchains [17] already hinted that some altcoins
might offer weaker security compared to Bitcoin, owing to the ad-hoc parameters they adopt.

In this paper, we investigate the security of altcoins from the perspective of vulnerability
patching. To this end, we select a set of important vulnerabilities reported in Bitcoin, and study
how their patches were propagated through (Bitcoin-based) altcoins. Our approach relies on
the inspection of GitHub repositories of popular cryptocurrencies, to identify relevant bugs and
corresponding patches in the commit history of GitHub-hosted altcoin projects. Concretely,
we study whether and how quickly various altcoin projects have addressed disclosed security
issues. Unfortunately, retrieving detailed timing information associated to code changes in
GitHub emerges as a challenging task. The reason is that most patches are taken directly from
the main project repository and applied to the fork via a rebase operation which only



2 Andreina et al.

exposes a reliable timestamp for the original patch (applied to the main project), and not the
actual time when the patch was ported (to the fork) [16]. Moreover, the original commits are
no longer referenced after rebase occurs. As Git prunes unreferenced commits period-
ically, the timestamps associated to a given patch are lost with every subsequent rebase
invocation. While prior studies on Bitcoin forks rely on code similarities to compare altcoins’
software with Bitcoin Core [20, 21], they cannot infer patches that were ported via rebase.

To overcome this problem, we devised an automated tool to measure patch propagation
times in Git-hosted forked projects even in the case of patches ported via rebase. Our tool
leverages GitHub’s event API and GH archive to estimate the time when a given patch is ap-
plied to a forked project. Namely, while GitHub follows the same practices as Git with pruning
unreferenced commits, it keeps a log for all commits that ever existed. This information can be
retrieved through GitHub’s API, as long as one can reference the relevant commits. By travers-
ing the graph of commits from the GH archive, we locate the (original) commit associated
to the target patch and estimates the propagation time using three methods (cf. Section 2.2).

Leveraging our tool, we analyze the patch-propagation time of various altcoin projects,
namely Dash [12], Digibyte [13], Monacoin [8], Litecoin [10], and Dogecoin [11], which we
selected among GitHub-based open-source forks of Bitcoin to ensure diversity in terms of mar-
ket cap, popularity, and vision. For each of the aforementioned altcoin projects, we estimate
the time it took to apply relevant patches ported from Bitcoin. Specifically, we consider 47
patches comprising 11 vulnerabilities reported in academic papers, 23 Bitcoin’s Common
Vulnerabilities and Exposures (CVEs), 3 major CVEs in libraries used by Bitcoin, 3 Bitcoin im-
provement proposals and 7 major bugs found on the GitHub repository with tags related to the
peer-to-peer network, covering crucial vulnerabilities reported in the last decade (see Table 1).

Our results (cf. Section 3) indicate that Bitcoin patched 55.3% of the vulnerabilities before
their disclosure, while this number drops to 28.5%, 21.4%, 25%, 10.7% and 10.7%, for
Litecoin, Dash, Dogecoin, Digibyte and Monacoin, respectively. For all selected altcoins,
most patches have been applied with considerable delay compared to the disclosure time,
thereby leaving many users vulnerable for several months or even years. We plan to release
our tool as open-source to better aid the community in extracting timing information from
re-based altcoins and other GitHub contributions4. Our results motivate the need to build
automated analysis tools for forked Bitcoin projects in order to precisely explore whether a
given vulnerability applies to any of those projects. This would indeed facilitate responsible
disclosure of vulnerabilities to all affected forks prior to any publication of the vulnerability.

2 Measuring Patch Propagation Times in Git

Most altcoins port software patches (that have been applied to Bitcoin Core) via the rebase
operations. Unfortunately, every rebase invocation modifies the history of the fork’s
repository—effectively altering the timestamps of all commits re-applied to the fork. In what
follows, we study the problem of analyzing the propagation times of patches in Git across
forked projects (i.e., the time to port a patch from the main project to the forked project), and
introduce our tool, GitWatch, as an effective solution to this problem.

4 https://github.com/sebastien-an/GitWatch



Short Paper: Estimating Patch Propagation Times across Blockchain Forks 3

2.1 Git Operations

Commit. We define a commit as a pair C = (M,D) of metadata and data—the latter
indicates the applied changes. Metadata information is essential for examining the history of a
repository. It includes a commit hash h (a.k.a. commit ID) that uniquely identifies the commit,
a parent p referencing the previous commit, an author a and a committer c, and corresponding
author timestamp ta and committer timestamp tc recording the creation time of the commit,
respectively, the time when the commit was last modified. The commit ID h is a cryptographic
hash over the changes D along with the remaining metadata: h=H(p,a,c,ta,tc,D). Git
allows associating tags to commit operations, e.g., to mark released versions of software. A
tag τ contains a reference h to the target commit, a timestamp t, and a human-readable label.

Push. A “batch” of commits authored by a user u forms a sequence (C1,...,Cm) defined
implicitly by the references to parent commits. Author and committer initially coincide with
the user pushing the commits, and similarly author and committer timestamps coincide.
Pushing a batch of commits (C1,...,Cm) triggers the addition of new snapshots, typically one
per commit Ci, to the commit history CH of the repository.

Fork. A fork of an existing repository R is a repository Rχ that shares a common history
with R—the latter is called the main branch. The latest commit that R and Rχ have in
common is called base commit. Let CH and CHχ denote the commit histories of R and Rχ

respectively. Then CH=(C0,...,Cm,...,Cm+s) and CHχ=(C0,...,Cm,Cχ
1 ,...,C

χ
r ), for r>0,

where Cm denotes the base commit and all commits Cχ
i diverge from the main branch.

Rebase. This operation allows integrating changes from the main branch R (e.g., Bitcoin) to
a fork Rχ (e.g., an altcoin) by re-applying all commits pushed to Rχ starting from a new base
commit in R—hence the term rebase. This operation is usually adopted to fetch the latest
version of the original repository. Invoking rebase effectively “re-builds” the changes
made in the fork on top of the new base commit, thereby modifying the commit history of
the fork. Formally, let CH=(C0,...,Cm,...,Cm+s) and CHχ=(C0,...,Cm,Cχ

1 ,...,C
χ
r ) be the

commit histories of the two repositories. Invoking rebase on Rχ with new base commit
Cm+k, with k>0, replaces CHχ with (C0,...,Cm+k,C

′χ
1 ...,C′χ

r ), where each commit C′χ
i

updates the original commit Cχ
i adapting the metadata to the new base commit Cm+k—the

committed changes D remain the same. This update modifies the first parent commit which,
in turn, triggers a chain reaction and modifies all subsequent parent commits. Formally:

C′χ
1 .p←Cm+k.h ∧ C′χ

i .p←C′χ
i−1.h ∀i=2,...,r. (1)

Rebasing has the crucial effect of updating the committer timestamp with the current time
(while author timestamps remain unchanged):

C′χ
i .tc←current time ∧ C′χ

i .ta=Cχ
i .ta. (2)

Rebasing makes timestamps unreliable. Rebasing can cause the loss of relevant timing
information in the case of multiple rebase operations being performed on the same
repository. Every rebase invocation preserves the author timestamp ta of the original
commits, however, it resets all committer timestamps tc in the commit history to the current
time—thereby overwriting all timestamps of previous rebase operations. This behavior
is illustrated in Figure 1. After a rebase, the old commits Cχ

1 ,...,C
χ
r become unreferenced

and are “dangling”. For saving up space, dangling commits are automatically pruned by
Git. However, when a rebase replaces Ci with C′

i, the two commits are factually different



4 Andreina et al.

(due to differing metadata) and are initially both accessible in GitHub via their respective
commit IDs. Assuming no pruning, this observation provides us with a strategy to retrieve
the timestamp of rebases: by listing all the different versions of a commit Ci and their re-
spective committer timestamp. Our methodology (c.f. Section 3) is based on this intuition
to estimate the timing of rebases, yet it is compatible with the pruning of dangling commits.

…

ec66f4 0a9376

…

06a3f6

8e1e84 de2209 51d4b2 a11bef

Parent: 06a3f6
Date: 2021-06

Parent: 8e1e84
Date: 2021-07

Parent: ec66f4
Date: 2022-04

Parent: 51d4b2
Date: 2022-04

Main branch
(e.g., Bitcoin)

Fork
(e.g., Altcoin)

Fig. 1: Effect of rebase on commit metadata: com-
mit ID, parent commit, and committer date are modi-
fied. Dotted boxes represent commits, arrows point to
parent commits.

2.2 Extracting rebase timing
GitHub generates events for all operations
on subscribable public repositories. To ex-
tract meaningful information about patch
propagation time—even when the patch
is applied via rebasing—we rely on two
main resources: GitHub’s event API and
GH archive. GH archive [14] is an openly
accessible service that provides the history
of all GitHub events since 2011. We ob-
serve that while rebases create dangling commits that are not retrieved when cloning, these
commits can still be queried through GitHub’s API by requesting the corresponding hash.
Our tool, GitWatch, relies on this to retrieve the timestamps of dangling commits.

To measure the patch propagation times for a GitHub project χ, GitWatch first
reconstructs the tree of commits that ever existed inχ, building a graphGχ=(V,E) containing
all commits C in χ (including dangling commits) as vertices, and with edges representing
the parent to child relationship, i.e., C∈V and (C.p,C)∈E. To do so, it crawls GH archive
for all events pertaining to χ in order to retrieve all commits from GitHub’s API. Using Gχ,
GitWatch locates the commit (if any) applying a target patch to χ and estimates the
corresponding timestamp using three different heuristics: patch-commit finder (PCF), patch-
event finder (PEF), and patch-tag finder (PTF). The patch propagation time ∆, from Bitcoin
to the altcoin, is then derived by comparing these estimates with the original timestamp of the
Bitcoin patch. The reliance on all three heuristics helps in eliminating possible false positives
that may arise due to missing events in the GH archive. Whenever we obtain different results
from the heuristics, GitWatch returns the smallest timeframe by default.
Patch-commit finder (PCF). Here, given a patch commit Ci ∈CHBC, we traverse Gχ to
collect all non-Bitcoin commits Cj containing Ci in their history. Concretely, we construct a
list nbccχ(Ci) of “non-Bitcoin child commits” defined as follows:

Cj∈nbccχ(Ci)⇐⇒Cj ∉CHBC ∧ Cj∈CHχ ∧∃(E1,..,En)∈Gχ :

E1.from=Ci∧En.to=Cj ∧∀i∈ [1,n−1], Ei.to=Ei+1.from.
(3)

PCF then locates in nbcc(Ci) the earliest commit C∗ such that:5

C∗∈nbccχ(Ci) ∧ C∗.tc≤Cj.tc ∀Cj∈nbccχ(Ci). (4)

The estimated patch-propagation time is ∆PCF←C∗.tc−Ci.ta.
Patch-event finder (PEF). In addition to Gχ, our second heuristic relies on inspecting GitHub
events. Events are associated to one or more commits: a push event e contains the list of
commits (C1,...,Cm) pushed by the author, i.e., e=(Ce,te) with Ce=(C1,...,Cm) and te is

5 C∗ following this property may not be unique, as multiple commits can have the same timestamp.



Short Paper: Estimating Patch Propagation Times across Blockchain Forks 5

the event timestamp. We denote by ϕ the mapping from commits to events, i.e., ϕ(Ci):=e
for all i= 1,...,m. Slightly abusing notation, we write Ci ∈ e⇔ ϕ(Ci) = e. Similarly to
PCF, we look for the earliest non-Bitcoin commit C∗ that contains patch Ci in its history,
however, we measure elapsed time with respect to event timestamps rather than commit
timestamps. We estimate the patch propagation time as the time span between the creation of
the patch commit Ci and the oldest event that references a commit Cj that has Ci in its history.
Let Eχ :={e | ∃C∈CHχ :ϕ(C)=e} denote the set of events pertaining to the altcoin χ and
recorded in the GH archive. PEF characterizes a relevant commit C∗ as follows:

C∗∈nbccχ(Ci) ∧ ϕ(C∗)∈Eχ ∧ϕ(C∗).t≤ϕ(Cj).t ∀Cj∈nbccχ(Ci)∩Eχ. (5)

The estimated patch propagation time is ∆PEF←ϕ(C∗).t−Ci.ta.
Patch-tag finder (PTF). Our third heuristic relies on timestamps recorded for relevant tags.
Intuitively, we estimate the patch propagation time as the interval between the creation of the
Bitcoin patch Ci and the creation of the first non-Bitcoin tag associated to a commit in χ that
has Ci in its history. We define “non-Bitcoin child tag” analogously to that of non-Bitcoin
child commit:

τ∈nbctχ(Ci)⇐⇒τ.h∈nbccχ(Ci) ∧τ∈Tagsχ∧τ ∉TagsBC. (6)

PTF identifies a relevant tag τ∗∈nbctχ(Ci) ∧ τ∗.t≤τ.t ∀τ∈nbctχ(Ci), and estimates the
patch propagation delay as ∆PTF←τ∗.t−Ci.ta.
Comparison. Assuming successful retrieval of all dangling commits, our methodology lists
all different versions of the relevant commitC∗ (one per rebase), allowing us to select the most
accurate commit timestamp. Our three heuristics therefore overcome the problem of retrieving
reliable timestamps in the presence of rebasing (c.f. Section 2.1). The major limitation of PCF
and PEF is that they may under-approximate the patching time in case a developer creates
the patch locally (or on a dev branch) and pushes the patch to the main branch at a later
time (e.g., for testing the patched code locally). PCF further relies on the developer’s local
clock, which could be skewed. PTF is not affected by these limitations, as it outputs the most
conservative timestamp. We therefore expect PTF to output the most accurate estimate in
typical scenarios, in particular because most users do not compile the latest modifications
based on the current version of the main branch (which may be unstable); they are more likely
to use released versions of the code, which are marked with tags. Notice that PCF, PEF, and
PTF exclusively inspect commits that are either rebased or merged with the same code base:
patches introduced with a different code base may therefore not be identified.

3 Methodology & Evaluation
3.1 Dataset
In our evaluation, we restrict our analysis to bugs and patches related to Bitcoin, in particular,
how they are propagated through altcoins that are based on the same code base. Since we are
interested in patches that are not specific to Bitcoin but relevant to most altcoins, we mainly
focus on reported bugs on the peer-to-peer layer as this layer is generally inherited by altcoins
(including those that introduce non-negligible modifications to the code base).

We analyze five altcoins, which we selected among existing open-source forks of Bitcoin:
Dash [12], initially known for its early adoption in darknet markets, currently worth 2.65
Billion USD; Digibyte [13], a cryptocurrency advertised for its improved functionality and
security, currently worth 1.12 Billion USD; Monacoin [8], aimed to become a national



6 Andreina et al.

2014 2015 2016 2017 2018 2019 2020
Patch issuance date

100

200

300

400

500

600

700

800

Ti
m

e 
to

 p
at

ch
 (d

ay
s)

PCF
PEF
PTF 106

107

108

109

1010

Do
lla

rs

marketcap

(a) Dash

2014 2015 2016 2017 2018 2019 2020
Patch issuance date

0

200

400

600

800

1000

1200

Ti
m

e 
to

 p
at

ch
 (d

ay
s)

PCF
PEF
PTF 105

106

107

108

109

Do
lla

rs

marketcap

(b) Digibyte

2014 2015 2016 2017 2018 2019 2020
Patch issuance date

200

400

600

800

1000

Ti
m

e 
to

 p
at

ch
 (d

ay
s)

PCF
PEF
PTF

107

108

109

Do
lla

rs

marketcap

(c) Dogecoin

2014 2015 2016 2017 2018 2019 2020
Patch issuance date

200

400

600

800

1000

Ti
m

e 
to

 p
at

ch
 (d

ay
s)

PCF
PEF
PTF

106

107

108

109

Do
lla

rs

marketcap

(d) Monacoin

2013 2014 2015 2016 2017 2018 2019 2020
Patch issuance date

0

100

200

300

400

500

600

700

Ti
m

e 
to

 p
at

ch
 (d

ay
s)

PCF
PEF
PTF

108

109

1010

Do
lla

rs

marketcap

(e) Litecoin

Patch 1 [2] Patch 2 [3] Patch 3 [4]

Bitcoin 2014-02 2015-11 2015-11

Dogecoin 106 days 90 days 84 days
Monacoin 1092 440 days 433 days
Litecoin 235 days 333 days 326 days
Digibyte 1089 days 437 days 431 days

Dash 291 days 75 days 69 days

(f) Time to apply the mitigation suggested
in [18] (measured starting from the release
of the Bitcoin patch).

Fig. 2: Time for a patch issued by Bitcoin-core to be included to the different altcoins. In the plots, the
blue circle, the orange triangle, and the green cross represent respectively the output values given by the
graph, the event, and the tag approach; the market capitalization over time of each coin is plotted as a
black dotted line against the values on the right y-axis.

payment system in Japan, currently worth 0.11 Billion USD; Litecoin [10] and Dogecoin [11],
which emerges among the most popular first-generation derivatives of Bitcoin with a market
capitalization of 14.82 Billion USD and 40.07 Billion USD respectively. We then selected a
list of 47 Bitcoin commits, 11 representing patches suggested by top-tier publications [18, 19,
22], 23 representing patches of CVEs, 3 representing Bitcoin improvement proposals (BIP), 3
representing CVEs in libraries used by Bitcoin and the remaining 7 representing bugs found
on the GitHub repository with tags related to the peer-to-peer network. These patches include
the majority of network and peer-to-peer vulnerabilities that were reported in the last decade.

3.2 Validation of GitWatch

To validate the effectiveness of GitWatch, we manually identified publication dates of
relevant patches (by investigating release notes), and we compared these dates with the
output of GitWatch for the same vulnerability. Our results, shown in Figure 2f, confirm
that for all the ground-truth data points we found, the actual patching time falls within the
interval reported by the three heuristic used by GitWatch (i.e., between the minimum and
maximum estimated propagation time). As expected, PTF provides the most accurate results,
especially since release notes are usually part of a new release to which a tag is assigned.

3.3 Evaluation results
Table 2: Ground-truth data to validate GitWatch.

Vulnerability Altcoin Time PCF PEF PTF

BIP 65 Litecoin 179 days [6] 159 160 181
BIP 65 Dogecoin 958 days [7] 244 147 958
BIP 66 Dogecoin 194 days [5] 142 142 194
CVE-2013-4627 Litecoin 33 days [1] 17 45 18
CVE-2013-4165 Litecoin 28 day [1] 10 529 13

As shown in Figure 2, GitWatch pro-
vides consistent timing estimates, which
converge in most cases. Dash (Figure 2a)
appears to port patches more quickly, com-
pared to the other blockchains, most of the times with a delay between 200 and 400 days.
Dogecoin and Litecoin instead (Figures 2c and 2e) show more variable patching delays,



Short Paper: Estimating Patch Propagation Times across Blockchain Forks 7

Table 1: Estimated patching time (in days) based on our dataset. A dash (-) indicates that GitWatch
could not find the patch in the altcoin.

Name Pub Date Description Bitcoin Litecoin Dash Dogecoin Digibyte Monacoin
Total Number of fixes 47/47 41/42 21/28 23/28 25/28 26/28

Paper [19] 2015-08-14 deterministic random eviction -143 19 15 92 681 684
Paper [19] 2015-08-14 random selection sha1 -143 19 15 92 681 684
Paper [19] 2015-08-14 random selection sha2 -143 19 15 92 681 684
Paper [19] 2015-08-14 test before evict 935 285 - 392 13 285
Paper [19] 2015-08-14 feeler connections 375 58 327 256 162 165
Paper [19] 2015-08-14 more buckets -143 19 15 92 681 684
Paper [19] 2015-08-14 more outgoing connections 1482 - - - - -
Paper [18] 2015-10-16 no inv messages 44 326 69 84 430 433
Paper [18] 2015-10-16 filtering inv by ip address 38 333 75 90 437 440
Paper [18] 2015-10-16 penalizing non-responding nodes -615 235 291 106 1089 1092
Paper [22] 2012-10-18 forward double spending attempts 617 202 281 362 950 953
Vulnerability - limit the number of IP learned from each DNS 0 103 - 392 13 103
Vulnerability - ensure tried table collisions eventually get resolved 0 281 - - - -
GitHub bug - fixes fee estimate and peers files only when initialized 0 119 198 279 867 870
GitHub bug - check block header when accepting headers 0 56 135 216 804 808
GitHub bug - introduce block download timeout 0 8 87 168 756 759
GitHub bug - de-serialization bug where AddrMan is corrupted 0 169 426 367 273 276
GitHub bug - don’t deserialize nVersion into CNode 0 15 194 94 376 167
CVE-2014-0160 2014-04-07 Remote memory leak via payment protocol 1 176 233 0 1030 1034
BIP 66 2015-02-13 FakeConf: Strict DER signatures -12 4 61 142 731 734
BIP 65 2015-11-12 FakeConf: OP_CHECKLOCKTIMEVERIFY -143 159 229 147 591 322
CVE-2016-10724 2018-07-02 DoS: Alert memory exhaustion -836 216 - 414 320 323
CVE-2018-17144 2018-09-20 Inflation: Missing check for duplicate inputs -3 1 1 - 155 1
CVE-2017-18350 2019-06-22 Buffer overflow from SOCKS proxy -632 151 727 91 140 151
CVE-2018-20586 2019-06-22 Deception: Debug log injection -229 41 380 - 106 244
CVE-2014-0224 2014-06-05 OpenSSL CVE 0 118 174 0 972 975
CVE-2018-12356 2018-06-14 Regex bug 1 184 - 291 50 184
CVE-2019-6250 2019-01-13 Vulnerability in the ZeroMQ libzmq library 5 31 - - - 31

Average 7.53 114.85 188.0 185.17 519.55 503.3

ranging between 50-600 days, respectively, and 100-500 days on average. Digibyte and
Monacoin (Figures 2b and 2d) exhibit an apparent linearly decreasing delay. This peculiar
behavior suggests that rebase operations to import the Bitcoin’s patches are executed on
a regular pace, in a manner that appears to be decoupled from the actual patch release. This
would explain the downward trend in the plots, indicating that groups of patches are actually
ported on the corresponding fork at the same time. To summarize, all five analyzed altcoins
apply patches with a delay between several months to a few years. We include the detailed
results of our study in Table 1. Out of the 47 selected commits, we omitted 5 CVEs that were
patched before any of the altcoins were created, and 13 CVEs and 1 BIP where only Litecoin
was released. Those 14 patches were ported by Litecoin with an average delay of 97 days.
Our results show that Bitcoin issues patches to most critical vulnerabilities and CVEs in a
prompt manner, often before the publication of vulnerability (i.e., in compliance with the
responsible disclosure process).

4 Case Studies
We now look more closely at two specific vulnerabilities found in Bitcoin, which we selected
because they are prominent and recent (disclosure in 2015 and 2017 resp.).
Case Study 1: Tampering with the Delivery of Information in Bitcoin [18]. In order to
sustain higher throughput and scalability, Bitcoin implemented a number of optimizations and
scalability measures. In [18], it was shown that some of those measures come at odds with
the security of the system. As a direct outcome of this vulnerability, a resource-constrained
adversary could mount a large-scale Denial-of-Service attack on Bitcoin—effectively halting



8 Andreina et al.

the delivery of all blocks and transactions in the system. The authors suggested various
improvements that resulted in multiple patches:

– Patch 1 - f59d. . . [2], penalizing nodes that do not respond to block requests.
– Patch 2 - 5029. . . [3], preventing adversaries from filling up the advertisement table.
– Patch 3 - 5026. . . [4], replacing the advertisement message with the full block header.

As shown in Figure 2f, Dash and Dogecoin took almost 3 months to port these patches from
Bitcoin, while Monacoin, Litecoin and Digibyte required between 7 months and 3 years.
Case Study 2: CVE-2017-18350 [9]. This buffer-overflow vulnerability of the Bitcoin-core
software was located in the proxy support, and would enable a malicious proxy server to
overwrite the program stack, allowing it to perform remote code execution. However, to be
vulnerable, the wallet needs to be configured to use a malicious proxy, therefore reducing
the general risk on the users. Since remote code execution could allow any third party full
access to the machine running the node, we deemed that this CVE to be of particular interest
due to its potential drastic impact. This vulnerability was discovered on September 21st
2017, was patched two days later, on September 23rd and the patch was merged with the
main branch of the Bitcoin-core repository four days later on September 27th, 2017. To
give enough time to the users for applying the patch, the CVE itself was published only on
the June 22nd, 2019. While this patch was applied directly to most of the different altcoins
based on the Bitcoin-core software, Dash [12] only patched it several months after it was
published, on November 19th, 2019. Dash users were seemingly using a vulnerable software
with no available update for several months after the disclosure of the vulnerability. Dogecoin,
Digibyte, Monacoin and Litecoin took respectively 91 days, 140 days, 151 days and 151
days to patch this vulnerability after it was discovered. While they all patched it before the
vulnerability was disclosed, the software still remained unpatched for several months.

5 Conclusion
In this paper, we showed that various altcoins exhibit weaker stability compared to Bitcoin
Core. Beyond confirming the folklore result that patch propagation is slow for some altcoins,
we introduced a new technique to estimate the time for altcoins to propagate security patches,
and deterimne which altcoins are faster in adopting a patch. For instance, Dash patched
CVE-2017-18350 5 months after the public release of the CVE. Moreover, among the five
altcoins we analyzed (some of which are worth several billions), Litecoin is the only project
to have consistently ported patches within 1 year of their release. Our findings also suggest
that a good number of network vulnerabilities pointed out in academic research were patched
in the core Bitcoin protocol and also eventually in many altcoins. We hope that our work
further motivates the need for a proper responsible disclosure of vulnerabilities to all forked
chains prior to any publication of the vulnerability.

Acknowledgments
This work was partially funded by the Deutsche Forschungs-gemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972
and the European Union (INCODE, Grant Agreement No 101093069). Views and opinions
expressed are however those of the author(s) only and do not necessarily reflect those of
the European Union. Neither the European Union nor the granting authority can be held
responsible for them.



Short Paper: Estimating Patch Propagation Times across Blockchain Forks 9

References

1. Litecoin v0.8.4.1 release note. https://litecoinmirror.wordpress.com/2013/
09/04/litecoin-0-8-4-1-release-notes/amp/ (2013)

2. Bitcoin patch propagation 1. https://github.com/bitcoin/bitcoin/commit/f5
9d8f0b644d49324cabd19c58cf2262d49e1392 (2014)

3. Bitcoin patch propagation 2. https://github.com/bitcoin/bitcoin/commit/50
29698186445bf3cd69d0e720f019c472661bff (2015)

4. Bitcoin patch propagation 3. https://github.com/bitcoin/bitcoin/commit/50
262d89531692473ff557c1061aee22aa4cca1c (2015)

5. Dogecoin v1.10 release note. https://github.com/dogecoin/dogecoin/release
s?q=BIP66&expanded=true (2015)

6. Litecoin v0.10.4 release note. https://github.com/litecoin-project/litecoi
n/blob/v0.10.4.0/doc/release-notes-litecoin.md (2015)

7. Dogecoin v1.14 alpha release note. https://github.com/dogecoin/dogecoin/rel
eases/tag/v1.14-alpha-1 (2018)

8. Monacoin. https://monacoin.org/ (2018)
9. Cve-2017-18350. https://medium.com/@lukedashjr/cve-2017-18350-discl

osure-fe6d695f45d5 (2019)
10. Litecoin. https://litecoin.com/en/ (2020)
11. Dogecoin. https://dogecoin.com/ (2021)
12. Dash. https://www.dash.org/ (2022)
13. Digibyte. https://digibyte.org/en-us/ (2022)
14. Gh archive. https://www.gharchive.org/ (2022)
15. Böhme, R., Eckey, L., Moore, T., Narula, N., Ruffing, T., Zohar, A.: Responsible

vulnerability disclosure in cryptocurrencies. Commun. ACM 63(10), 62–71 (sep 2020).
https://doi.org/10.1145/3372115, https://doi.org/10.1145/3372115

16. Businge, J., Moses, O., Nadi, S., Berger, T.: Reuse and maintenance practices among divergent
forks in three software ecosystems. In: Empirical Software Engineering (2021)

17. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.: On the security
and performance of proof of work blockchains. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 24-28, 2016. pp. 3–16. ACM (2016).
https://doi.org/10.1145/2976749.2978341, https://doi.org/10.1145/2976749.29
78341

18. Gervais, A., Ritzdorf, H., Karame, G.O., Capkun, S.: Tampering with the delivery of blocks
and transactions in bitcoin. In: Ray, I., Li, N., Kruegel, C. (eds.) Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, October
12-16, 2015. pp. 692–705. ACM (2015). https://doi.org/10.1145/2810103.2813655, https:
//doi.org/10.1145/2810103.2813655

19. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s peer-to-peer network.
In: Jung, J., Holz, T. (eds.) 24th USENIX Security Symposium, USENIX Security 15, Washington,
D.C., USA, August 12-14, 2015. pp. 129–144. USENIX Association (2015), https://www.
usenix.org/conference/usenixsecurity15/technical-sessions/pres
entation/heilman

20. Hum, Q., Tan, W.J., Tey, S.Y., Lenus, L., Homoliak, I., Lin, Y., Sun, J.: Coinwatch: A clone-based
approach for detecting vulnerabilities in cryptocurrencies. In: IEEE International Conference on
Blockchain, Blockchain 2020, Rhodes, Greece, November 2-6, 2020. pp. 17–25. IEEE (2020).
https://doi.org/10.1109/Blockchain50366.2020.00011, https://doi.org/10.1109/Bl
ockchain50366.2020.00011



10 Andreina et al.

21. Jia, A., Fan, M., Xu, X., Cui, D., Wei, W., Yang, Z., Ye, K., Liu, T.: From innovations to prospects:
What is hidden behind cryptocurrencies? In: MSR. pp. 288–299. ACM (2020)

22. Karame, G., Androulaki, E., Capkun, S.: Double-spending fast payments in bitcoin. In: Yu,
T., Danezis, G., Gligor, V.D. (eds.) the ACM Conference on Computer and Communica-
tions Security, CCS’12, Raleigh, NC, USA, October 16-18, 2012. pp. 906–917. ACM (2012).
https://doi.org/10.1145/2382196.2382292, https://doi.org/10.1145/2382196.23
82292


