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Abstract. Trick-taking games are traditional card games played all over
the world. There are many such games, and most of them can be played
online through dedicated applications, either for fun or for betting money.
However, these games have an intrinsic drawback: each player plays its
cards according to several secret constraints (unknown to the other play-
ers), and if a player does not respect these constraints, the other players
will not realize it until much later in the game.
In 2019, X. Bultel and P. Lafourcade proposed a cryptographic protocol
for Spades in the random oracle model allowing peer-to-peer trick-taking
games to be played securely without the possibility of cheating, even by
playing a card that does not respect the secret constraints. However, to
simulate card shuffling, this protocol requires a custom proof of shuf-
fle with quadratic complexity in the number of cards, which makes the
protocol inefficient in practice. In this paper, we improve their work in
several ways. First, we extend their model to cover a broader range of
games, such as those implying a set of cards set aside during the deal
(for instance Triomphe or French Tarot). Then, we propose a new ef-
ficient construction for Spades in the standard model (without random
oracles), where cards are represented by partially homomorphic cipher-
texts. It can be instantiated by any standard generic proof of shuffle,
which significantly improves the efficiency. We demonstrate the feasibil-
ity of our approach by giving an implementation of our protocol, and we
compare the performances of the new shuffle protocol with the previous
one. Finally, we give a similar protocol for French Tarot, with comparable
efficiency.

1 Introduction

Trick-taking Games. With the development of computers, many traditional
games have been adapted into electronic versions. The emergence of the In-
ternet has naturally made it possible to play these games online with opponents
from all over the world. This is particularly the case for card games, and it is



now possible to play Poker, Bridge, Blackjack, Ramis, Triomphe, Écarté, Euchre
or Tarot with human opponents at any time and any place, thanks to the use of
dedicated applications on computers or smartphones. While these applications
allow users to play for fun, many of them offer to play for money. In this case,
there are several security issues to consider, since an application that allows play-
ers to cheat would illegitimately make honest players lose money. For this reason,
several works, initiated in the seminal paper of Goldwasser and Micali [15], have
proposed cryptographic protocols allowing to play cards securely.

Trick-taking games are a family of card games that all have the same struc-
ture: the cards are dealt to the players, then the game is divided into several
rounds; in each round, players take turns playing a card, and the player with the
highest value card wins the round. However, players cannot play any card from
their hand and must follow several constraints defined by the rules. For example,
in Whist and its variant Spades (which appeared in the 40’s), players must play
a card of the same suit as the first card of the round if they can. There are many
popular trick-taking games around the world such as Belote, Bridge, Tarot, Skat
or Whist. Some of them are gambling, and can be played in online casinos, such
as Spades, Bourré or Oh Hell Stackpot (a gambling version of Oh Hell).

Unlike other card games, trick-taking games allow players to cheat without
it being immediately detectable: since the players’ cards are hidden, it is not
possible to know if a player respects the rules at the time it plays its card.
The cheating is detected later in the game, when the cheater plays a card it
is not supposed to have. In this case, the game is cancelled at the detriment
of the other players which have lost time and energy. In addition, trick-taking
games are often played in teams, and the cheater’s teammates must then take
responsibility of the cheater’s behavior. While this may be embarrassing in the
presence of the other players, it is much easier to deal with online when players
are anonymous. To avoid this situation, online trick-taking game applications
prevent illegal plays. However, to do this control, the application must have
access to the cards of all players, which must therefore trust the application by
assuming that it is not rigging the games.

Since such cheating is possible with a physical deck of cards, the classical
cryptographic card game protocols do not prevent it. In [6], Bultel and Lafour-
cade introduce the secure trick-taking game protocols, which allows to detect
when a player does not respect the rules of the game, without learning anything
from its cards. Such protocols have the following properties:

Unpredictability: the cards are dealt at random.
Theft and cheating resistance: a player cannot play a card that is not in its

hand, and cannot play a card that does not follow the rules of the game.
Hand and game privacy: players do not know the hidden cards of their ad-

versaries at the beginning of the game, then at each step of the game, the
protocol does not reveal anything else than the cards that have been played.

Unfortunately, the security model from [6] cannot be applied to games in which
not all cards are used by the players, because the challenger deduces the op-
ponent’s hand from the knowledge of the honest players’ hands, which is not
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possible if cards are discarded. This excludes some very famous games, such as
the well-known French Tarot, the Skat game, considered as the national card
game of Germany, as well as one of the oldest trick-taking games, Triomphe,
which dates back to the 15th century and is at the origin of both the word trump
and many other games, like Écarté and Euchre. As with Spades, for sake of
clarity, we choose to focus here on Tarot, but our approach is easily generalized.

Furthermore, the card distribution mechanism of the protocol in [6] suffers
from two drawbacks inherent to its design. In a nutshell, each player chooses a
secret key sk and computes the corresponding public key pk for each of its cards.
It then alters its public key (and other parameters) using a random value, and
shuffles the generator/key pairs (with a proof of correctness). At the end of this
step, each generator/key pair is assigned a random card thanks to a random
value the players need to agree on. The first issue is that this approach is highly
dependent on the random oracle model, the second is that the shuffle proof
proposed in [6] is not efficient since its complexity is in O(n2) in the number of
cards, which is 32, 54, 78 or even 104 cards depending on the game.

Contributions. In this paper, we first extend the security model from [6] to cover
the French Tarot (see Section 4). French Tarot being the most complex of the
games with Cards Set Aside, it is easy to simplify our model to adapt it to other
games having this property.

Then, we propose two new secure Trick-taking protocols based on a common
idea (as in [6], for the sake of clarity, we base one of our protocols on Spades,
but it can be adapted to any game having the same structure, such as Whist,
Bridge, etc., the other is based on Tarot for similar reasons). Their card rep-
resentations differ from [6] (and is closer to classical cryptographic card game
protocols), which allows us to address both of the above drawbacks. Each card
is encrypted by a key shared by all players using a partially homomorphic public
key encryption scheme, such that all shares are needed to decrypt a card. To
shuffle the deck, the players randomise and shuffle these encrypted cards in turn,
then each player is given its encrypted cards, and each player uses its key share
to partially decrypt the other players’ cards. Thus, at the end of this process,
the cards are only encrypted by their owner’s key share. This method has the
advantage of shuffling the cards directly instead of shuffling keys associated with
cards assigned a posteriori, so it is no longer necessary to use a random oracle
to assign the cards randomly. Moreover, the shuffle is done on a partially homo-
morphic encryption scheme, and there are many efficient generic zero-knowledge
proofs to prove the correctness of such a shuffle in the literature with linear com-
plexity in the number of ciphertexts [2,13,17]. This allows us to instantiate our
protocols much more efficiently than in [6], and to propose practical yet secure
trick-taking protocols. Details are given in Section 5 and proofs are presented
in Appendix F. We also give a protocol for Tarot, with similar complexity (see
Section 6, and Appendix E and G).

The goal is to reduce this additional cost to a point where cryptographic
operations would no longer cause delays during the game. The efficiency of our
Trick-taking protocols is assessed in Appendix A, along with an implementation
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in Rust to demonstrate their practicality. Most of the complexity cost comes from
the proofs (that everything was done correctly), and especially in the shuffle
phase (Proof 1 in Section 5). A first improvement is that we can implement
two designs for this proof. In order to show the advantage of our approach,
we evaluate the performance of our protocols when instantiated either with a
specific proof built from the same method (and a similar execution time) as [6]
(5.64 s for the proof and 5.72 s for the verification), or with the efficient generic
proof proposed by Groth in [17] (234.70 ms for the proof and 175.23 ms for the
verification), which is unapplicable to [6]. Provided with a linear execution time,
usage of this design makes our protocol practical even if used with more cards
and/or more players as its overall complexity is linear in the number of cards
and in the number of players.

Related Work. There are several cryptographic protocols in the literature for
securing online card games [1, 4, 10–12, 15, 19, 21, 23], but most of them do not
prevent illegal moves in trick-taking games. To the best of our knowledge, the
only protocol with this property is [6]. It is also possible to use generic tools
to obtain similar properties such as multiparty computation [9] or proofs of
circuits [14], but these approaches are too generic and inefficient. Finally, another
line of research, complementary to ours, studies ways to detect cheating in trick-
taking games by analysing the behavior of players [22]. The idea is to determine
if a player knows its opponent’s cards by analysing its playing style.

2 Technical Overview

2.1 Rules of Trick-Taking Games: the Example of Spades

The traditional version of Spades is played by 4 players divided into two teams
of 2 players, but the rules can be adapted for more players. It uses the traditional
deck of 52 cards divided into the 4 Latin suits, which are swords (spades ♠),
cups (hearts ♡), coins (diamonds ♢) and clubs (♣) and its rules are as follows:
Draw. All 52 cards are handed out equally to each player for a total of 13 cards

each. Each player then bids on the number of tricks it plans to win.
A round. The first player of a new game is chosen randomly, the others fol-

lowing in a determined order. The game consists of a sequence of rounds,
requiring all 4 players to play a card in turn. In each round, the suit of
the first card played is called the leading suit and the player that plays the
highest card wins the tricks (the 4 cards played), and starts the next round.

Rank of cards. The cards of the same suit are ranked from highest to lowest
as follows: Ace, King, Queen, Jack, 10, 9, 8, 7, 6, 5, 4, 3, 2. The cards of the
spade suit have a higher value than the cards of the leading suit.

Priority of cards. A player must play a card from the leading suit if it can.
Otherwise, it can play any card it wants. Note that since the players’ cards
are hidden, the other players cannot check if a player is following this rule
at the moment it plays the card. We address this limitation (among others)
with our secure trick-taking game protocol.
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Objective. If the number of tricks exceeds a team’s bet, its players win 10
points per trick, plus 1 point for each additional trick, otherwise 0 points.

Most trick-taking games, including Bridge, Whist, Belotte, Bourré, Coinche,
Pinochle, Ho Hell and many others follow the same structure as Spades. The
differences are in the number of players or cards, the way scores are calculated,
the ranking and the priority of the cards. The rules of priority can be complex,
requiring cards of higher and higher values for a given suit, or requiring a par-
ticular suit when a player does not have a card of the leading suit. However,
as a general rule, at the time the card is played, it is always possible to deter-
mine which cards should have been played first if the player had had them. Our
protocol is based only on this property, so it can be easily generalized.

2.2 The Particularity of French Tarot

By describing Spades, we have given a quite general framework, powerful enough
to be adapted to almost any trick-taking game. But one particular case has never
been addressed: the case where a set of cards is set aside during the deal, such
as the dog (chien) in French Tarot. The dealing of this game generates another
hand: While played with 4 players, 6 cards are put aside in a fifth hand until
the bets are over. Once the cards are dealt, the bids start. The taker (the player
that bets the highest) then plays against the 3 other players and needs to obtain
a certain amount of points in its tricks to win. A player that does not bid passes.
If all players pass, new cards are dealt. Presented below in increasing importance,
the bids implies various dealing procedures for the dog:

Petite (”small”): the ”dog” is revealed to all players and added to the hand of
the taker. The latter confidentially sets aside the same number of cards from
its hand and puts them aside to form the beginning of its score pile.

Garde (”guard”): same as petite, and points earned by the taker are double.
Garde sans (”guard without” the dog): the dog goes directly into the taker’s

score pile, no one gets to see it. The point multiplier is set to four.
Garde contre (”guard against” the dog): the dog goes directly into the oppos-

ing score pile. The score is worth six times the base score.

The deck in Tarot consists of 78 cards of 3 types: 52+4 normal cards (Ace,
King, Queen, Knight, Jack, 10 down to 2, nearly as in Spades) and 22 trumps
(from 1 to 21, and an Excuse). Excuse, 1 (Petit) and 21 of trumps are special
cards and called the oudlers. On a petite or garde, the taker may not set aside
in the dog a king or a trump, except if it cannot discard anything else; In this
case, the trumps put in the dog must be displayed. In any case, it is forbidden to
discard oudler trumps. Without entering into details of the game, Tarot follows
the general rule that at the time the card is played, it is always possible to
determine which cards should have been played first if the player had had them.

Note that unlike Tryomphe or Euchre, this game has very specific rules giving
rise to several particular cases. We treat the case of the French Tarot because its
model and protocol can be adapted easily to other games with cards set aside.
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2♠ · · · A♠ · · · 2♢ · · · A♢
Adhoc

encryption
c0,1 · · · c0,13 · · · c0,37 · · · c0,52

(g, pk · idcard)

c4,1 · · · c4,13 · · · c4,37 · · · c4,52

ci,j = Rand(ci−1,δi(j), ri,j , pk)
Shuffles

Player’s 1 hand Player’s 4 hand

Fig. 1: Dealing cards in our trick-taking protocol. id : cards, pk : a public key,
ri,j : random numbers, permutations δi(j) ∈ J1, 52K for all i ∈ J0, 3K, j ∈ J1, 52K.

2.3 An Overview of our Protocols

To ensure that honest users can play online while no cheater can proceed for
more than one round, our trick-taking protocols (formally presented in Defini-
tion 3 and 4) require the following properties: First, at each step of the game, the
previous plays should have been valid for the rounds to continue. Secondly, no
player or central authority must have been trusted to reach the first requirement.
Finally, maybe the most important of the conditions, the algorithm has to be
practical, since a significant computational overhead would prevent any attempt
of a player to play the game. To achieve this level of security, we choose a model
in which at each round, for each of the played cards, the players must provide a
proof for each of their actions, that their fellows verify before proceeding. These
proofs have to be zero-knowledge, i.e., reveal nothing about the players’ hands.

Card Dealing. Before playing, the cards must have been shuffled and drawn
(proofs ensuring each player that everything was executed correctly). We use
randomisable encryption (that allows to randomise the ciphertext). A first phase
(graphically represented in Figure 1, for a standard set of cards) allows to give
each player its (encrypted) hand. A second phase allows it to recover its hand.

Setup. Each player Pi starts the game by (1.i) generating a key pair (pki, ski)
from which a global public key pk is generated. The canonical deck (with
predefined order) is denoted as D = (id1, . . . , id52). Proofs ensure that the
keys were generated correctly.

Generation of the Ciphertexts. Each player (1.ii) computes ad hoc randomis-
able (ElGamal) ciphertexts (c0,j)j=1,...,52 of all cards in D with the common
public key pk.

Shuffle. To shuffle this set of encrypted cards, each player Pi in turn (1.iii)
sequentially applies a random permutation (δi,j) to the ciphertexts and ran-
domise them using a secret random vector (ri,j) and the randomisation al-
gorithm of ElGamal presented in Section 2.3. Each of these steps is associ-
ated with a proof. Cards are now shuffled and distributed in between the
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players. For i ∈ {1, 2, 3, 4}, player Pi receives the ciphertexts of indices in
{13 · (i− 1) + 1, 13 · i}.

Hand Recovery. All players (2.i) broadcast some values θi,j (alongside a proof)
for the 39 ciphertexts they have not been attributed. This allows each player
Pi to (2.ii) remove the randomness on the other players’ keys on the ci-
phertexts to recover a vector of ciphertexts only encrypted by pki. Its cards
remain oblivious to the other players as they are still encrypted with its key.
It can finally obtain its cards by decrypting these values using ski.

Dog Generation. The rules of a trick-taking game may require some cards to be
set aside during the shuffle. To keep these cards secret, some ciphertext indices
are associated to the dog and the matching θi,j may not be revealed by the
players. Unrevealed cards form the dog, based on the rules, they can later be
revealed (through a similar process as part 2 of the shuffle), permuted or shuffled
with some other cards (as in 1.iii). All outputs of these operations are produced
alongside the associated proofs. As highlighted in Section 2.2, in French Tarot,
kings and trumps may not be placed in the dog unless it is impossible to proceed
otherwise. For later use, we define a set O ⊂ D ∈ Deck composed of the cards
id that may not be discarded. To guaranty that rules are followed, one has to
prove that none of the cards placed in the dog do belong to O.

Card Playing. How a card is picked is not specified in our protocol, but it ensures
that it follows the rules of the game. When player Pi picks one of its cards to be
played, it first proves that the played card is indeed in its hand (by showing it
matches one of its ciphertexts). Then it shows that the played card follows the
rules of the game: if it does not follow the leading suit, it has to prove that none
of its remaining ciphertexts encrypt cards that could have followed this suit.
Immediate verification of the proofs by the other players remove all potential
doubts on the validity of the new play.

3 Cryptographic Tools

First we recall the Decision Diffie-Hellman hypothesis (DDH): Let G be a group.
The DDH assumption states that given (g, ga, gb, gz) ∈ G4, there exists no
polynomial-time algorithm able to decide whether z = a · b or not. Our schemes
uses the ElGamal encryption scheme defined by the following algorithms:
KeyGen(K): Picks dk

$← Z∗
q (draw uniformly in the specified set) and computes

ek = gdk. Returns (ek, dk).

Enc(m, ek): Draws y
$← Z∗

q , returns c = (c1 = gy, c2 = m · eky).
Dec(c, dk): Parses c as (c1, c2) and returns m = c2 · c−dk

1 .
ElGamal is IND-CPA secure (indistinguishable under chosen plaintext attack)
under DDH [20], moreover it is partially homomorphic and randomizable, which
means that there exists an algorithm Rand that changes a ciphertext c into a
new ciphertext c′ of the same plaintext:
Rand(c, r, ek): Parses c as (c1, c2) and returns c′ = (c′1 = c1 · gr, c′2 = c2 · ekr).
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Our construction also uses Non-Interactive Zero-Knowledge Proofs of Knowl-
edge (NIZKP) [16]. Let R a binary relation and s, w two elements verifying
(s, w) ∈ R. A (NIZKP) is a cryptographic primitive allowing a prover knowing
a witness w to show that w and s verify the relation R leaking no information
on w. Throughout this paper, we use the Camenisch and Stadler notation [7],
i.e., ZK{w : (w, s) ∈ R} denotes the proof of knowledge of w for the statement s
and the relation R, and Ver(s, π) returns 1 if the proof π is correct, 0 otherwise.

Let L be a language such that s ∈ L ⇔ (∃w, (s, w) ∈ R). A NIZKP is said to
be sound when there is no polynomial-time adversary A such that A(L) outputs
(s, π) such that Ver(s, π) = 1 and s ̸∈ L with non-negligible probability. It is said
to be extractable when there exist a polynomial-time knowledge extractor Ext
and a negligible function ϵSoK such that, for any algorithm ASim(·,·) that outputs
a fresh statement (s, π) with Ver(s, π) = 1 such that A has access to a simulator
that forges proofs for chosen statements, ExtA outputs w such that (s, w) ∈ R
having access to A with probability 1 − ϵextract. It is said to be Zero-knowledge
when a proof leaks no information, i.e., there exists a polynomial-time algorithm
Sim called the simulator such that ZK{w : (s, w) ∈ R} and Sim(s) follow the
same probability distribution.

4 Models for Trick-Taking Game Revisited

4.1 Formal Definitions of Trick-Taking Scheme and Protocol

Trick-taking schemes and protocols were formalised in [6], but their definitions
miss the French Tarot. Here we extend them to cover this additional game while
staying consistent with the existing. We introduce a new definition covering both
the existing and our work, for that we merge algorithms DeckGen and GKeyGen
as it could have been in [6]. Only DeckGen is kept for the shuffle. In order to
cover the dog in French Tarot, we also add up an algorithm named MakeDog.

Trick-taking Game Scheme. In trick-taking games, a card is defined based on
two attributes: a suit and a number, such that id = (suit, val) ∈ Suits × Values
is a card. A deck of k cards is modeled by a k-tuple D = (id1, . . . , idk), where
∀i, j ∈ J1, kK, idi ̸= idj . The set of all possible decks is denoted by Decks. A deck
D might contains a subset O of cards that may not be discarded in the dog.

We first define trick-taking schemes, which contain all the algorithms that are
used by the players. KeyGen allows each player to generate its public/secret key.
DeckGen is a protocol that distributes the cards. MakeDog allows to manipulate
a dog. GetHand determines the hand of a given player from its secret key and
the game key. Play allows a player to play a card, and to prove that it follows
the rules of the game. Verif allows the other players to check this proof. Finally,
GetSuit returns the leading suit of the current round. Formally:

Definition 1. A trick-taking scheme W = (Init,KeyGen,VerifKey,DeckGen,GetHand,
Play,Verif,GetSuit) between m participants is defined as follows:
Init(K): It returns a setup parameter setup.
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KeyGen(setup): It returns a key pair (pk, sk).
DeckGen: It is a m-party protocol, where for all i ∈ J1,mK the ith party, denoted

as Pi, takes as input (ski, {pkl}1≤l≤m). This protocol returns a deck D and
a game public key PK, or the bottom symbol ⊥.

GetHand(n, sk, pk,PK): It returns a set of cards H ⊂ D called a hand if the
player index n matches the keys.

Play(n, id, sk, pk, st,PK): It takes as input a player index n ∈ J1,mK, a card id, a
pair of secret/public key, a global state st that stores the relevant information
about the previous plays, the game public key PK and returns a proof Π, and
the updated global state st′.

Verif(n, id, Π, pk, st, st′,PK): It takes as input a player index n ∈ J1,mK, a card
identity id, a proof Π generated by the algorithm Play, the global state st
and the updated global state st′, the game public key PK and returns a bit b.
If b = 1, we say that Π is valid.

GetSuit(st): It returns a suit suit ∈ Suits from the current global state of the
game st, where suit is the leading suit for the current turn.

An additional algorithm can be added to trick-taking schemes to support a dog:
MakeDog(n,PK): This is an m-party protocol outputting an updated game public

key PK based on the previously derived key and a player index n.

Trick-taking Protocol. We now present the trick-taking protocol, which defines
the order of execution of the above algorithms. It is divided into three phases:
keys generation, shuffle and splitting of the card, and finally the game phase.

Definition 2. Let W be a trick-taking scheme potentially with a MakeDog algo-
rithm and K ∈ N be a security parameter. Let P1, . . . ,Pm be m polynomial-time
algorithms. The trick-taking protocol instantiated by W between P1, . . . ,Pm is
the following protocol:

Keys generation phase: P1 runs setup ← Init(K) and broadcasts setup. The
players set st =⊥. Each player Pi runs (pki, ski)← KeyGen(setup) and broad-
casts pki.

Shuffle phase: All the players start by checking the other players’ proofs. Then
P1 generates a deck D ∈ Decks and broadcasts it. The players generate PK
by running the protocol DeckGen together. For all i ∈ J1,mK, Pi runs Hi ←
GetHand(n, sk, pk,PK). Then if instantiated, the players run MakeDog based
on the derived game public key PK and for a common index n.

Game phase: This phase is composed of k (sequential) steps (corresponding to
the number of cards played in a game). The players initialize the current
player index p = 1. At each turn, Pp designates the player which plays. Each
step proceeds as follows:
– Pp chooses id ∈ Hp, then runs (Π, st′)← Play(p, id, skp, pkp, st,PK).
– For all i ∈ J1,mK \ {p}, Pp sends (id, Π, st′) to Pi.
– Each Pi then checks that Verif(p, id, Π, pkp, st, st

′,PK) = 1, otherwise,
Pi sends error to Pp, which repeats this step.

– If Verif(p, id, Π, pkp, st, st
′,PK) = 1, all players update the state st := st′,

and update the index p that points to the next player according to the
rule of the game.
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4.2 Security Properties

We now recall the security model of trick-taking protocols introduced in [6].
We give a high-level description of its properties, the full formalism is given in
Appendix C. Note that we adjusted some parts to make them more generic to
cover both the protocol of [6] and our Spades protocol (the model proposed in [6]
being too specific to the design of the related protocol). To formalise the security
of our French Tarot protocol, that does not fall within the general model, an ad
hoc model is depicted at the end of this section and detailed in Appendix D.

In general, we consider a security experiment where a challenger interacts
with an adversary. The adversary simulates the behaviour of a malicious player
and its teammate, which we will refer to as an accomplice (we therefore consider
strong attacks where the adversary colludes with its teammate). The adversary
chooses the secret key of the malicious player and shares its public key after the
challenger has sent the public keys of the other three players, then the adversary
chooses its accomplice, and the challenger reveals the key of the accomplice to
the adversary. They then perform the shuffle phase, where the adversary plays
the role of the malicious user and its accomplice, and the challenger simulates
the behaviour of the other two players. Note that the challenger knows the secret
keys of three players, so it can determine their hands, and thus deduce the hand
of the malicious user. Finally, the adversary and the challenger simulate the
game phase, where the adversary plays the role of the malicious user and its
accomplice, and the challenger plays the role of the other two honest players.
Of course, the security properties we describe must be proven regardless of the
algorithm the challenger uses to simulate the two honest players.

Theft and cheating resistance: A protocol is theft-resistant when a player cannot
play a card that is not in its hand. To attack the theft-resistance, the adversary
must make the challenger accept a card that is not in the hand of the mali-
cious player during the experiment with non-negligible probability. A protocol
is cheating-resistant when a player cannot play a card that does not follow the
rules of the game. To attack the cheating-resistance in a trick-taking protocol,
the adversary must make the challenger accept a card that is not of the lead-
ing suit from the malicious player during the experiment with non-negligible
probability, even though it has such cards in its hand.

Unpredictability: The unpredictability ensures that the cards are dealt at ran-
dom. The adversary breaks this property if it can alter the shuffle in such a way
that a card chosen at the beginning of the experiment ends up in one chosen
hand with a significantly different probability than the usual distribution. Thus,
unpredictable holds if no adversary succeeds this attack for any chosen card
with a significant advantage. We have slightly modified this property to achieve
a stronger version that the one originally presented in [6]. Here, our adversary
chooses the card and the hand where it expects the card to be distributed.

Hand-privacy: The hand-privacy ensures that the players do not know the hand
of the other players at the beginning of the game. This time, the adversary has
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no accomplice, and the original experiment is truncated before the game phase.
The challenger then chooses two out of the three honest players, and randomly
picks one of their cards. To break the hand-privacy, the adversary must guess
which player owns this card with a non-negligible advantage.

Game-privacy: A protocol is game-private when at each step of the game phase,
the players learn nothing else than the previously played cards. This property is
defined by a real/simulated experiment. In the real setting, the adversary plays
the real protocol with a challenger as in the experiment described above (again,
the adversary has no accomplice). In the ideal one, the protocol is simulated
using the public parameters of the honest users only. If there is a simulator such
that the adversary cannot distinguish whether it is playing a real or simulated
experiment with a non-negligible advantage, then the protocol is game-private.
Intuitively, this means that a player could have simulated the protocol itself
convincingly, which means that an adversary does not learn anything private
during the game. Note that the combination of hand-privacy and game-privacy
shows that the players have no information about the other players’ hands except
for all the cards they have already played.

Particularity of Dog’s Security. One would expect a dog (or any set of card set
aside in general) to behave as one of the player’s hands: it should not be possible
to steal (covered by theft resistance), to predict (unpredictability), to influence
(theft-resistance) nor learn the cards in the dog (hand and game privacy) at
the end of the shuffle. Despite fitting the model in terms of required properties,
games with dogs do not allow us to rely completely on what exists. As specified
above, the challenger must deduce the adversary’s hand from its knowledge of
the other three. With the dog, since some cards are not in the players’ hands,
this is no longer possible. The model must therefore be refined, at the expense
of its genericity. Since the hand can no longer be implicitly inferred, we need to
add an extractable NIZK of the players’ secret keys to the formal definition to
allow the challenger to explicitly retrieve the hand of the adversary. A less ad
hoc model is left as an open problem.

In addition, to empower our adversary we let it decide which player takes
and its bet. A second accomplice is also granted. Based on the rules of the Tarot
game, the security of the dog should be insured through an additional property.
The rules disallow to place some cards in the dog during the MakeDog algorithm.
The latter is ensured through a property that we call Dog security.

5 Our Spades protocol

We first define our new Spades protocol based on the randomisation of ElGamal.
Here the deck D contains 52 cards, and each of the 4 players hands 13 cards.

Definition 3. Algorithms of our Spades scheme are instantiated as follows:

Init(K): It generates a group G of prime order q, a generator g ∈ G and returns
setup = (G, q, g).
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KeyGen(setup): It picks dk
$← Z∗

q and computes ek = gdk. Then a proof of knowl-

edge Πek = ZK{dk : ek = gdk} is computed and (sk = dk, pk = (ek, Πpk)) is
returned.

DeckGen: It is a 4-party protocol, where for all i ∈ J1, 4K the ith party is denoted
as Pi, and takes as input his/her secret keys ski and the public keys of all
the players {pkl}1≤l≤4. This protocol returns a game public key PK, or ⊥.
Phase 1:
– The canonical deck D ∈ Decks is initialized by each player.
– Each user parses D = (id1, . . . , id52) and computes pk =

∏4
i=1 eki, then

for all j ∈ J1, 52K each player computes c0,j ← (g, pk · idj) and set c0 ←
(c0,j)1≤j≤52.

– For each i ∈ {1, 2, 3, 4}, each Pi does in turn: it picks at random a

permutation δi ∈ J1, 52K52, and (ri,j)1≤j≤52
$← (Z∗

q)
52. Pi then computes

ci,j ← Rand(ci−1,δi(j), ri,j , pk) and generates a proof

πi,1 ← ZK
{
(δi, (ri,j)1≤j≤52) : ci,j = Rand(ci−1,δi(j), ri,j , pk)

}
. (1)

Finally, Pi sets ci ← (ci,j)1≤j≤52 and broadcasts (ci, πi,1).
– Each player verifies the proofs (πi,1)1≤i≤4.

Phase 2:
– For all i ∈ J1, 4K, player Pi parses c4 = (c4,j)1≤j≤52 and c4,j = (xj , yj).

– For all j ∈ J1, 52K\J13 · (i− 1) + 1, 13 · iK, each Pi computes θ(i,j) = xski
j ,

πi,2 ← ZK

{
ski :

∧
j∈J1,52K\J13·(i−1)+1,13·iK

θ(i,j) = xski
j ∧ pki = gski

}
, (2)

then Pi broadcasts (θ(i,j))j∈J1,52K\J13·(i−1)+1,13·iK and πi,2.
– For all i ∈ J1, 4K, for all l ∈ J1, 4K, for all j ∈ J13 · (l − 1) + 1, 13 · lK,

each Pi computes c∗j ←
(
xj ,

yj∏
1≤γ≤4;γ ̸=l θ(γ,j)

)
, and verifies the proofs

(πγ,2)γ∈J1,4K\{i}.
– Each player returns PK← (c∗j )1≤j≤52.

GetHand(n, sk, pk,PK): The algorithm parses PK as (c∗j )1≤j≤52 and returns a
hand H ← {Decsk(c∗j )}j∈J13·(n−1)+1,13·nK.

Play(n, id, sk, pk, st,PK): It parses PK = (c∗j )1≤j≤52 and the state element st =
(α, suit, U1, U2, U3, U4). If st =⊥ it sets four empty sets U1, U2, U3 and U4.
Let t ∈ J13 · (n − 1) + 1, 13 · nK be the integer such that id = Decsk(c

∗
t ). It

sets U ′
n = Un ∪ {t}. Note that at each step of the game, the set Un contains

the indices of all the (c∗j )j∈J13·(n−1)+1,13·nK that have already been used by
player n to play a card. For all i ∈ J1, 4K\ {n}, it sets U ′

i = Ui.
If α = 4 or st =⊥ then it sets α′ = 1 and suit′ = id.suit. Else it sets α′ = α+1
and suit′ = suit. The index α states how many players have already played
this round, so if α = 4, players start a new round. Moreover, suit states
which suit is the leading suit of the round, given by the first card played in
the round. This algorithm sets st′ = (α′, suit′, U ′

1, U
′
2, U

′
3, U

′
4). It generates

Π0 = ZK {sk : id = Decsk(c
∗
t )} , (3)
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which proves that the played card id matches one of the ciphertexts in PK
attributed to the player n. Let L ⊂ J1, 52K be a set such that for all l ∈ L,
suit′ ̸= idl.suit, i.e., L is the set of the indices of the cards that are not of the
leading suit this round. Then it produces:
– If suit′ = id.suit or if |Un ∪ {t}| = 13, it sets Π1 ←⊥ (if the card id is of

the leading suit, then the player can play it in any case).
– If suit′ ̸= id.suit and |Un ∪ {t}| < 13, it generates

Π1 = ZK

{
sk :

∧
j∈J13·(n−1)+1,13·nK

j ̸∈Un∪{t}

∨
l∈L

idl = Decsk(c
∗
j )

}
. (4)

Which proves that the player n cannot play a card of the leading suit.
Finally, it returns the proof Π = (t,Π0, Π1), and the updated value st′.

Verif(n, id, Π, pk, st, st′,PK): It parses st as (α, suit, U1, U2, U3, U4), st′ as (α′,
suit′, U ′

1, U
′
2, U

′
3, U

′
4), the key PK as (c∗j )1≤j≤52, and Π as (t, Π0, Π1). First

checks if t ∈ J13 · (n − 1) + 1, 13 · nK, if not return 0. If st =⊥, it sets four
empty sets U1, U2, U3 and U4. Let L ∈ J1, 52K be a set such that for all l ∈ L,
suit′ ̸= idl.suit, i.e., L is the set of the indices of the cards that are not of the
leading suit. This algorithm first checks that the state st is correctly updated:
– If there exists i ∈ J1, 4K\ {n} such that U ′

i ̸= Ui, then it returns 0.
– If t ∈ Un or Un ∪ {t} ≠ U ′

n, then it returns 0.
– If α = 4 or st =⊥, and α′ ̸= 1 or suit′ ̸= id.suit, then it returns 0.
– If α ̸= 4 and suit ̸=⊥, and α′ ̸= α+ 1 or suit′ ̸= suit, then it returns 0.

This algorithm then verifies the ZKP to check that the player does not cheat
by playing a card it has not, or by playing a card that is not of the leading
suit even though it could play a card of the leading suit.
– If Π0 is not valid then it returns 0.
– If suit′ ̸= id.suit and there exists an integer j ∈ J1, 13K such that (13 ·

(n− 1) + j) ̸∈ Un and Π1 is not valid then it returns 0.
If none of the previous checks fails, then this algorithm returns 1.

GetSuit(st): It parses st as (α, suit, U1, U2, U3, U4) and returns suit.

Security. This Spades protocol relies on the unpredictability of the randomness
introduced by the players, security of the ZKP and the DDH hypothesis.

Theorem 1. Given proofs of knowledge with soundness, extractability and zero-
knowledge, our protocol is theft-resistant, cheating-resistant, hand-private, un-
predictable, and game-private under the DDH assumption.

For lack of space, the proof of this theorem is given in Appendix F whereas
a discussion on the arguments used to show each of the properties follows.

Theft-resistant. An adversary trying to play someone else’s card falls short due
to the required ZKP. While trying to play player Pi’s card, its ignorance of
the secret key ski means that it needs to produce such a proof for someone
else’s card, i.e., a valid ZKP for a false statement, which is prevented by
the soundness of the ZKP. Such a move is only possible with negligible
probability since the proof systems are sound.
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Cheating-resistant. We start by the same arguments as above: we invoke the
soundness of the ZKP to show that an adversary cannot influence the shuffle
of the game. To play a card that is not of the leading suit, assuming it has
some cards of the leading suit at the time of playing the card, an adversary
should forge a proof of a false statement. Again, the soundness of the ZKP
implies the inability of the adversary to proceed.

Unpredictable. During the shuffle each action requires a ZKP to prove honesty
in the execution. Soundness of these proofs imply that our adversary must
follow the shuffle protocol. It still has an influence via the permutations
and the randomisation it inputs. Two cases need to be considered, when
the challenger is the last to shuffle and when it is not. In the first case the
random values outputted by the challenger will vanish any attempt to cheat.
However, in the second case, the adversary plays last. Based on the DDH we
show that in such a case the adversary does not learn anything about the
shuffle cards before it proceeds and cannot decide which value to pick. Hence,
the rightfully executed shuffle yields the unpredictability of its outcomes.

Hand-private. Turn by turn, using a random permutation and randomising
the ciphertexts, the players shuffle the deck during the execution of DeckGen.
Assuming DDH hardness and thus the indistinguishability of the ElGamal
encryption, we can conclude that the ciphertexts are completely unlinkable to
the card values. An adversary would be unable to learn any information from
what it sees and in the meantime ZKP ensure that it follows the protocol.

Game-private. We provide a simulator algorithm for our game. It shows ran-
dom values instead of ciphertexts and simulats its ZKP in order to link these
values to some cards. Due to extractability of the ZKP, we can build an ad-
versary that would have high chances of breaking DDH if it were able to
distinguish this simulation from a real game.

6 Our French Tarot’s Protocol

We now show how to achieve a protocol that contains a dog through highlighting
an instantiation of a Tarot protocol. Adapted from our previously presented
Spades scheme of Section 5, we need to address the MakeDog algorithm based
on the rules of this game. We present this protocol for 4 players and a regular
deck of 78 cards. Based on the rules this leads to 18 cards for each player and a
dog composed 6 cards. We assume that cards indexed by i ∈ J73, 78K are reserved
for the dog and that O contains the cards that may not be discarded in the dog.

Definition 4. Our French Tarot protocol is defined similarly to Definition 3
(the few differences are implied trivially by the specificity of the rules) except for
the algorithm MakeDog defined as follows (see Appendix E for details).

MakeDog: It is a 4-party protocol taking as input the index n of a player.
– For all i ∈ J1, 4K, player Pi parses c4 = (c4,j)1≤j≤78 and c4,j = (xj , yj).

– For all j ∈ J73, 78K, each Pi send θ(i,j) = xski
j , as well as a proof π′

i,2 ←
ZK
{
ski :

∧
j∈J73,78K θ(i,j) = xski

j ∧ pki = gski
}
.
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– For all i ∈ J1, 4K, j ∈ J73, 78K, each Pi recovers id∗j ←
(

yj∏
1≤γ≤4 θ(γ,j)

)
,

the cards of the dog, and verifies the proofs (π′
γ,2)γ∈J1,4K\{i}.

– Pn shuffles its cards with the dog: first sets c∗j = (g, pk · idj) for j ∈
J73, 78K, then let K = J18 ·(n−1)+1, 18 ·nK∪J73, 78K. It picks a permuta-

tion δ ∈ K24, and (rj)j∈K
$← (Z∗

q)
24, computes c5,j ← Rand(c∗δ(j), rj , pk)

for j ∈ K and a proof π5 ← ZK
{
(δ, (rj)j∈K) : c

∗
5,j = Rand(c∗δ(j), rj , pk)

}
.

For all j ∈ J1, 78K \ K, set c5,j ← c∗j . Player Pn sets c∗ ← (c5,j)1≤j≤78.
– Pn shows that it follows the rules and did not put unauthorized card in

the dog by producing the proof:

Πn ←− ZK

{
skn :

∧
j∈J73,78K

∨
l/∈O

idl = Decskn(c5,j)

}
, (5)

then it sends (c∗, π5, Πn). If Pn has no choice but to put l trumps in
the dog, then it cannot produce this proof. Let j1, . . . , jl ∈ J73, 78K be the
indices of these cards. In this case, Pn produces the tokens θjk = xskn

jk

and the proofs πjk ← ZK
{
skn : θjk = xskn

jk
∧ pki = gski

}
for 1 ≤ k ≤ l.

It also proves than it cannot proceed otherwise:

Π ′
n ←− ZK

{
skn :

∧
j∈J18·(j−1)+1,18·jK

∨
l∈O

idl = Decskn(c5,j)

}
, (6)

and then produces proof 5, with j ∈ J73, 78K\{j1, . . . , jl}. Player Pn then
broadcasts (c∗, π5, Πn) and (Π ′

n, {θjk , πjk}1≤k≤l).
– Each Pi for i ∈ J1, 4K \ {n}, checks all the received proofs and checks

that for all j ∈ J1, 78K \ K, c5,j = c∗l . In case Pn has revealed a card, Pi

computes idjk ← yjk/θjk and checks idjk is an authorised oudler.
– Each player returns PK← c∗.

Theorem 2. Given proofs of knowledge with soundness, extractability and zero-
knowledge, our tarot protocol is theft-resistant, cheating-resistant, hand-private,
unpredictable, game-private and dog-secure under the DDH assumption.

This theorem is based on similar arguments as exposed in Section 5. The
proof is detailed in Appendix G.

7 Conclusion

In this paper, we modify and expand the security model for trick-taking games.
It encompasses the security for a broader range of protocols and enables to
put aside some cards after the shuffle and appoint them to a player later in
the game. Two new trick-taking schemes with security in the standard model
are proposed. These protocols can be instantiated with any proof of shuffle on
partially homomorphic encryption, which makes them efficient and usable.

Future work would consist in implementing them in real conditions, with real
and not simulated interactions between the players.
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A Efficiency Analysis

Users of online card games want efficient and reliable tools. Waiting in between
plays would inevitably lead to a degraded game experience. We compare our
protocol to the only other secure Spades protocol [6], and we are able to reduce
this waiting to a point where cryptographic operations would no longer cause
delays during the game. To show these claims, we have implemented our protocol
in Rust [18], based on the well-known Curve25519 [5] elliptic curve as it is known
for its efficiency. The benchmarks below have been obtained using an Intel(R)
Core(TM) i7-4790 CPU @ 3.60GHz processor without using parallelisation. No
other Tarot scheme exists in the literature, this one has a very similar execution
time as the Spades protocol as it keeps the same structure and uses the same
type of proofs. Let n be the number of cards used during a game.

Most of the computations are due to the numerous zero-knowledge (ZK)
proofs. A first improvement is that we can implement two designs for Proof 1 of
the shuffle.

– Design (1): proof 1-out-of-n [8] based on Schnorr’s proof, complexity O(n2).
– Design (2): Groth proof of shuffle from [17], complexity O(n).

Since the second design proves shuffle of homomorphically encrypted ele-
ments, it cannot be used in [6]. In Figure 2, the time execution of these shuffles
from 10 to 100 cards is presented.

We can refer to Table 1 for a benchmark of the ZK proofs. Instantiated
with Design (1), we directly see that our total execution time is going to be
unpractical as it takes more than 5 seconds to execute the proof of shuffle and
that one proof needs to be executed for each of the players. Provided with a
linear execution time, usage of Design (2) makes our protocol practical even if
used with more cards and/or more players as its overall complexity is linear in
the number of cards. The number of players does not influence the complexity
of the ZK proofs and the execution time of the shuffle depends linearly on it.

Numerous multiplications by a scalar and zero-knowledge proofs (leading to
more multiplications) are used in our protocol. We provide a theoretical compar-
ison of our protocol with the Spades protocol of [6] in Table 2, which records the
number of elliptic curve point multiplications at each step of Spades protocols.
Note that totals for Play and Verif and a full execution of the game are well
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Fig. 2: Complexity Evaluation of the Zero-Knowledge Proofs for Proof 1 of our
protocol varying from 10 to 100 cards.

Design (1) Design (2)

Prove Verify Prove Verify

Execution of Proof 1 5.64 s 5.72 s 234.70 ms 175.23 ms

Prove Verify

Execution of Proof 2 586.38µs 1.14 ms

Execution of Proof 3 1.191 ms 2.69 ms

Execution of Proof 4 104.06 ms 103.99 ms

Table 1: Average execution time of the four ZKP for 52 cards.
Proofs’ number refers to formulas’ number of Section 5.

Note that (1) has similar execution time as previous work [6]

over-estimated as we consider the worst possible plays. It is important to note
that the ZK proofs in DeckGen dominates the computation cost: The proofs of
shuffle used in both [6] and Design (1) are the same 1-out-of-n proofs as above,
and lead to 43 160 multiplications by a scalar. With Design (2), we are thus able
to drastically diminish the cost of DeckGen.

On the whole, a full execution of DeckGen can be performed with Design (1)
in about 20 seconds of processor time for all 4 players, against 3 seconds with
Design (2) at equivalent security level. It takes 178 milliseconds (ms) to recover
each hand. A play takes about 270 ms of time and its verifications only 185 ms.

KeyGen DeckGen GetHand Play Verif GetSuit Total for a full game

[6] 13 43 862 598 1802 1828 0 79 139

Design (1) 2 43 680 13 1802 1828 0 61 209

Design (2) 2 4 458 13 1802 1828 0 21 806

Table 2: Elliptic curve point multiplications in each of the Spades algorithms
(for one player).
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This analysis shows that this protocol is the most efficient secure Spades protocol
existing to date. Our Tarot protocol has a computation overhead of the same
magnitude. Furthermore, these timings being of the same order of magnitude
than 1 RTT (Round-Trip Time), the overhead brought by securing the protocol
seems acceptable. Although the communication time has been ignored in this
benchmark, some pre-computation during communication time, mostly of the
proofs, may compensate this limitation.

B Cryptographic Background

In this section, we give more details on the definitions, the DDH assumption and
zero-knowledge proofs.

An asymmetric encryption scheme is a mechanism allowing a user to send a
plaintext p to a receiver without revealing them to the public or any malicious
actor. A sanitary recall is given in the upcoming definition.

Definition 5 (Asymmetric Encryption Scheme). An encryption algorithm
E is given by four algorithms:

Setup(1K). This algorithm outputs params, the global parameters of the scheme.
KeyGen(params). This algorithm outputs the keys (dk, ek).
Encek(p). For a given plaintext p, a ciphertext c is returned.
Decdk(s). For a given ciphertext c, a plaintext p is returned.

An asymmetric encryption scheme has the following properties:

Correctness. For all K ∈ N, for all possible outputs of Setup(1K), for all pos-
sible pair of keys (dk, ek), Decdk(Encek(p)) = p

Indistinguishability under Chosen Plaintext Attacks. (IND-CPA)
This property ensure that ciphertext leaks no information on the messages.
Let E = (KeyGen,Enc,Dec) be an encryption scheme and K its security
parameter. Take A a probabilistic polynomial time algorithm. Experiment
ExpIND-CPA

E,A (K) is described in Figure 3. The property holds if for any poly-

nomial time adversary A, AdvIND-CPA
A (K) = |Pr[ExpIND-CPA

ϵ,A (K) = 1]− 1/2| ≤
negl(K).

The IND-CPA security of the ElGamal encryption scheme relies on the DDH
problem. In the multi-users settings a reduction to the same problem exists. Let
Expn−IND-CPA

A (K) be the IND-CPA experiment with access to a polynomial amount
n(K) of independent oracles all providing ElGamal ciphertexts for different keys
or random elements depending on the value of an element b.

Property 1 (From [3]). Let EG = (KeyGen,Enc,Dec) be the ElGamal public-key
encryption scheme as described above. Then for any adversary A there exists an
adversary D such that for any K ∈ N and any polynomial n(K),

Advn−IND-CPA
EG,A (K) ≤ 2 · AdvDDH

D (K) +
1

2K−1
.
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ExpIND-CPA
E,A (K)

params←− Setup(1K)
(dk, ek)←− KeyGen(params)
(m0,m1)←− A(params, ek)

b
$← {0, 1}

c←− Encek(mb)
b∗ ←− A(c)
Return b = b∗

Fig. 3: Experiment for IND-CPA.

For qe(K) the number of total queries to each ElGamal encryption’s oracle, the
running time of D is that of A plus O(qe(K)n(K) · T exp

G (K)). Where T exp
G (K)

represent the time for a single exponentiation in G.

This property gives guarantees on n− IND-CPA security of the ElGamal encryp-
tion used in our protocols, we latter extend this property to prove security of our
protocols.

C Formal Security Model of Trick-Taking Games

Security of trick-taking protocols requires the simulation of the honest players
based on their knowledge of the game (previous plays and their hand). This
simulation is achieved using an algorithm called trick-taking strategy, which
decides which card to play based on the game situation.

Definition 6. A trick-taking strategy is a polynomial-time algorithm Strat that
takes as input a tuple of cards played (which represents all cards played at some
point in a trick-taking game) and a set of cards hand (which represents all cards
of a player at the same point), a first player index p∗, a player index p, and that
returns a card id ∈ Hand which is valid according to the rules of the considered
game.

Based on [6] we define an experiment where a challenger simulates a Trick-
taking protocol to an adversary. This experiment is used and refined to define the
security properties of Trick-taking schemes: theft-resistant, cheating-resistant,
unpredictability, hand-privacy and game-privacy. These properties define the at-
tacks that should not be feasible by a polynomial-time adversary, regardless of
the strategies used to simulate the other players.

Only the algorithms were modified from [6] for this experiment, the purpose of
this game remains the same: simulating a Trick-taking scheme with an adversary.
The adversary is allowed to take part of the game as one of the four players and
to take an accomplice. Note that in this experiment the adversary has access
to the private key of all players. The challenger cannot use the hand generation
algorithm for the corrupted player, because he does not know its secret key;
however, the challenger can deduce the adversary’s hand because it contains the
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13 cards that are not in the hand of the three other users. After generating a
shuffled deck, the challenger and the adversary run the game phase, such that
the adversary plays the role of the corrupted user and its accomplice.

Trick-taking Experiment:

Definition 7. Let W = (Init,KeyGen,DeckGen,GetHand,Play,Verif,GetSuit) be
a Trick-taking scheme, S = (Strat1,Strat2,Strat3,Strat4) be a tuple of strategies,
and K ∈ N be a security parameter. Let A and C be two polynomial-time al-
gorithms. The Trick-taking experiment ExpTrickTW,S,A(K) instantiated by W and S
between the adversary A and the challenger C is defined as follows:
Keys generation phase: C runs setup ← Init(K), sets st =⊥, and sends the

pair (setup, st) to A, which returns a corrupted user index ic ∈ J1, 4K. For all
i ∈ J1, 4K\ {ic}, C runs (ski, pki)← KeyGen(setup) and sends (ski, pki) to A,
which returns the public key pkic and an accomplice index ia.

Shuffle phase: C and A generate PK by running the algorithm DeckGen to-
gether, such that A plays the role of the players Pic and Pia , and C plays the
role of the other players. If PK =⊥, then C aborts and returns 0. Following
this step C execute Hi ←− GetHand(i, ski, pki,PK) for i ∈ J1, 4K\{ic}, and set
Hic = {idi}1≤i≤52 \(∪4i=1;i ̸=ic

Hi).
Game phase: C initializes the first player index p∗ = 1, the current player

index p = p∗, the corrupted play index γ = 0, and played =⊥. For j ∈ J1, 52K:
If p ̸= ic and p ̸= ia: C runs id ← Stratp(played, Hp, p∗, p), then C runs

(Π, st′) ← Play(p, id, skp, pkp, st,PK). C sends (id, Π, st′) to A and up-
dates st := st′.

If p = ia: C receives (id, Π, st′) from A. If Verif(ia, id, Π, pkia , st, st
′,PK) =

0, then C aborts and the experiment returns 0. Else, C updates st := st′.
If p = ic: C increments γ := γ+1, then receives (id, Π, st′) from A and sets

(idic,γ , Πic,γ) = (id, Π). C sets stγ = st and st′γ = st′. C sets suitic,γ =
GetSuit(st). If Verif(ic, idic,γ , Πic,γ , pkic , stγ , st

′
γ ,PK) = 0, then C aborts

and the experiment returns 0. Else, C updates st := st′.
C then updates the index p that points to the next player according to the rule
of the Trick-taking game, parses played as (pl1, . . . , pln) (where n = |played|)
and updates played := (pl1, . . . , pln, id).

Final phase: The experiment returns 1.

Theft-resistant

Definition 8. A Trick-taking scheme W is said to be theft-resistant if for any
tuple of strategies S = (Strat1,Strat2,Strat3,Strat4) and any polynomial-time
adversary A which plays the Trick-taking experiment instantiated by W and S,
the probability that there exists γ ∈ J1, 13K verifying the two following conditions
is negligible.
– Verif(ic, idic,γ , Πic,γ , pkic , stγ , st

′
γ ,PK) = 1, i.e., the γth play of the adversary

is accepted for the card idic,γ and
– idic,γ /∈ Hic , i.e., the card idic,γ is not in the adversary’s hand.
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Cheating-resistant

Definition 9. A Trick-taking scheme W is said to be cheating-resistant if for
any tuple of strategies S = (Strat1,Strat2,Strat3,Strat4) and any polynomial-time
adversary A which plays the Trick-taking experiment instantiated by W and S,
the probability that there exists γ ∈ J1, 13K verifying the following is negligible.
– Verif(ic, idic,γ , Πic,γ , pkic , stγ , st

′
γ ,PK) = 1, i.e., the γth play of the adversary

is accepted for the card idic,γ ;
– idic,γ .suit ̸= suitic,γ and suitic,γ ̸=⊥ i.e., the suit of the card idic,γ is not the

leading suit;
– There exists id ∈ Hic such that: ∀ l ≤ γ, idic,l ̸= id and id.suit = suitic,γ . i.e.,

the adversary has a card of the leading suit in its hand that was not already
played before the γth play.

Unpredictable

Definition 10. Let W be a Trick-taking scheme and K ∈ N be a security pa-
rameter. Let A and C be two polynomial time algorithms. The unpredictable
experiment ExpunpW,A(K) instantiated by W between the adversary A and the chal-
lenger C is defined as follows:
Keys generation phase: C runs setup ← Init(K), sets st =⊥, and sends the

pair (setup, st) to A, who returns a corrupted user index ic ∈ J1, 4K. For all
i ∈ J1, 4K\ {ic}, C runs (ski, pki) ← KeyGen(setup). The challenger sends
{pki}i∈J1,4K\{ic} to A, who returns its public key pkic and an accomplice
index ia. C finally sends skia to A who answer is a card id and a player
index iguess ∈ {1, 2, 3, 4}.

Shuffle phase: C and A generate PK by running the algorithm DeckGen to-
gether, such that A plays the role of the players Pic and Pia , and C plays
the role of the other players. If PK =⊥, then C aborts and returns a ran-
dom bit following a Bernoulli distribution with parameter 1/4. Following
this step C execute Hi ←− GetHand(i, ski, pki,PK) for i ∈ J1, 4K\{ic}, and set
Hic = {idi}1≤i≤52 \(∪4i=1;i ̸=ic

Hi).
Final phase: If id is in Higuess , then C returns 1, else it returns 0.

Definition 11. The Trick-taking scheme W is said to be unpredictable if for
any adversary playing ExpunpW,A(K), the probability that ExpunpW,A(K) returns 1 is
negligibly close to 1/4.

Hand-Privacy

Definition 12. Let W = (Init,KeyGen,DeckGen,GetHand,Play,Verif, GetSuit)
be a Trick-taking scheme and k ∈ N be a security parameter. Let A and C be
two polynomial time algorithms. The hand experiment ExpHandW,A(K) instantiated
by W between the adversary A and the challenger C is defined by:
Key generation phase: C runs setup ← Init(K). It sets st =⊥. It sends the

pair (setup, st) to A, who returns ic ∈ J1, 4K. For all i ∈ J1, 4K\ {ic}, C runs
(ski, pki)← KeyGen(setup) and sends pki to A, who returns pkic .
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Shuffle phase: C and A generate PK by running the algorithm DeckGen to-
gether, such that A plays the role of Pic , and C plays the role of the three
other players. If PK =⊥, then C aborts and returns a random bit with uniform
distribution. For all i ∈ J1, 4K\ {ic}, C runs Hi ← GetHand(i, ski, pki,PK),
and sets Hic = {idi}1≤i≤52 \(∪4i=1;i̸=ic

Hi).
Challenge phase: C picks θ0 and θ1 in J1, 4K\ {ic} such that θ0 ̸= θ1. C picks

b
$← {0, 1} and id

$← Hθb , and sends (id, θ0, θ1) to A, who returns b∗.
Final phase: If b = b∗, then C returns 1, else it returns 0.

Definition 13. A Trick-taking scheme W is hand-private if for any polynomial-
time adversary A which plays ExpHandW,A(K), the probability that the experiment
returns 1 is negligibly closed to 1/2.

Game-privacy

Definition 14. For any K ∈ N, any Trick-taking scheme W , any quadruplet of
strategies S, any adversary D and any element K =

(
setup, {ski, pki}1≤i≤4;i ̸=ic

,

PK
)
, ExpTrickTW,S,K,D(K) denotes the same experiment as ExpTrickTW,S,D(K) except:

1. The challenger and the adversary use the setup and the keys in K instead of
generating fresh setup and keys during the experiment.

2. A has no accomplice.
A Trick-taking scheme W is said to be game-private if there exists a polynomial-
time simulator Sim such that for any tuple of strategies S and any polynomial-
time 5-party algorithm D = (D1,D2,D3,D4,D5), |Preal(D, k) − Psim(D, k)| is
negligible, where

Preal(D, k) =

Pr


1← D5(vw) :

setup← Init(K); ic ← D1(setup);
∀i ∈ J1, 4K \ {ic}, (ski, pki)← KeyGen(setup);
pkic ← D2(setup, {pki}i∈J1,4K\{ic} , vw);

PK← DeckGenP1,P2,P3,P4where Pic = D3(vw);
K := (setup, pkic , {(ski, pki)}1≤i≤4;i̸=ic

,PK);

If PK =⊥, vw :=⊥;
Else b← ExpTrickTW,S,K,D4(vw)

(K);



Psim(D, k) =

Pr

1← D5(vw) :

setup← Init(K); ic ← D1(setup);
∀i ∈ J1, 4K \ {ic}, (ski, pki)← KeyGen(setup);
pkic ← D2(setup, {pki}i∈J1,4K\{ic} , vw);

PK← DeckGenP1,P2,P3,P4where Pic = D3(vw);
If PK =⊥, vw :=⊥;
Else b← SimTrickT

W,S,D4(vw)
(k, setup, ic, {pki, }1≤i≤4 ,PK, vw);


and where vw denotes the view of D, i.e., all the values sent and received by each
algorithm of D during its interaction with the experiment.
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D Adaptation of the Security Model to the French Tarot

In this section, a detail version of the model highlighted in Section 4.2 is given.
This means giving a formal definition of the experiments associated to each
of the following properties: theft-resistant, cheating-resistant, Unpredictability
hand-privacy, game-privacy and dog security. For this purpose we uses Honest
players simulations is defined in Section C, these algorithms are now considered
in the context of French Tarot. Also, bets are needed in Tarot, in our model, the
taker and its bet is set up to the adversary’s choice.

Trick-taking Experiment:

Definition 15. Consider a Trick-Taking scheme W = (Init,KeyGen,DeckGen,
GetHand,Play,Verif,GetSuit), a tuple of strategies S = (Strati)

4
i=1, and a security

parameter K ∈ N. Let A and C be two polynomial-time algorithms. The Trick-
Taking experiment ExpTrickTW,S,A(K) instantiated by W and S between the adversary
A and the challenger C is defined as follows:

Keys generation phase: C runs setup ← Init(K), sets st =⊥, and sends the
pair (setup, st) to A, which returns a corrupted user index ic ∈ J1, 4K. For all
i ∈ J1, 4K\ {ic}, C runs (ski, pki, Πpki) ← KeyGen(setup) and sends {ski, pki,
Πpki}i∈J1,4K\{ic} to A, which returns the public key (pkic , Πpkic

) and two

accomplice indies i1a and i2a. C verifies the latest proof and extracts the secret
key skic from A’s proof Πpkic

. C finally sends ski1a and ski2a to A.
Shuffle phase: C and A generate PK by running the algorithm DeckGen to-

gether, such that A plays the role of the players Pic and the two accomplice
indies i1a and i2a C plays the role of the other players. If PK =⊥, then C aborts
and returns 0. Following this step C execute Hi ←− GetHand(i, ski, pki,PK)
for i ∈ J1, 4K. A return an index iDog and a binary value d ∈ {0, 1}. Protocol
MakeDog is executed with C based on this index if d = 1. If C is the taker,
then it draws random permutation until it attains a valid setup. After this
execution, it updates the hand of player PiDog

with GetHand.
Game phase: C initializes the first player index p∗ = 1, the current player

index p = p∗, the corrupted play index γ = 0, and played = ∅. For j ∈
J1, nDK:
If p ̸= ic, i

1
a, i

2
a: C runs id← Stratp(played, Hp, p∗, p), then C runs (Π, st′)←

Play(p, id, skp, pkp, st,PK). Challenger C sends (id, Π, st′) to A and up-
dates st := st′.

If p = i1a or p = i2a: C receives (id, Π, st′) from A. If Verif(ia, id, Π, pkia , st,
st′,PK) = 0, then C aborts and the experiment returns 0. Else, C updates
st := st′.

If p = ic: C increments γ := γ+1, then receives (id, Π, st′) from A and sets
(idic,γ , Πic,γ) = (id, Π). C sets stγ = st and st′γ = st′. C sets suitic,γ =
GetSuit(st). If Verif(ic, idic,γ , Πic,γ , pkic , stγ , st

′
γ ,PK) = 0, then C aborts

and the experiment returns 0. Else, C updates st := st′.
C then updates the index p that points to the next player according to the rule
of Trick-taking game, parses played as (pl1, . . . , pln) (where n = |played|) and
updates played := (pl1, . . . , pln, id).
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Final phase: Then return 1.

For the winning condition of theft-resistant, cheating-resistant refer to Defi-
nitions 8 and 9.

Unpredictability:

Definition 16. Let W be a Trick-Taking scheme based on a security parameter
K ∈ N. Let A and C be two polynomial time algorithms, let iguess ∈ {1, . . . , 5} re-
ferring to the four players and index 5 to the dog. The unpredictable experiment
ExpunpW,A(K, iguess) instantiated by W between the adversary A and the challenger
C is defined as follows:

Keys generation phase: C runs setup ← Init(K), sets st =⊥, and sends the
pair (setup, st) to A, which returns a corrupted user index ic ∈ J1, 4K. For
all i ∈ J1, 4K\ {ic}, C runs (ski, pki, Πpki) ← KeyGen(setup). The challenger
sends {pki, Πpki}i∈J1,4K\{ic} to A, which returns its public information (pkic ,
Πpkic

) and two accomplice indies i1a and i2a. C verifies the latest proof and
extracts the secret key skic from A’s proof Πpkic

. C finally sends ski1a and
ski2a to A, the latest answers a card id.

Shuffle phase: C and A generate PK by running the algorithm DeckGen to-
gether, such that A plays the role of the players Pic , Pi1a

and Pi2a
, and C

plays the role of the other players. If PK =⊥, then C aborts and returns
0. Following this step C execute Higuess ←− GetHand(iguess, skiguess , pkiguess ,PK).
On aborts, C returns a random bit following a Bernoulli distribution with
parameter n

iguess
h /nD.

Final phase: If id is in Higuess , then C returns 1, else it returns 0.

Definition 17. A Trick-Taking scheme W is said to be unpredictable if for
any adversary playing ExpunpW,A(K, iguess) for all indices iguess ∈ {1, . . . , 5}, the

sum
∑5

iguess=1

(
Pr[ExpunpW,A(K, iguess)]− n

iguess
h /nD

)
is negligible.

Hand-privacy:

Definition 18. Let W be a Trick-Taking scheme and K ∈ N be a security pa-
rameter. Let A and C be two polynomial time algorithms. The hand-privacy
experiment ExpHandW,A(K, iguess) instantiated by W between the adversary A and
the challenger C and for an index iguess ∈ {1, . . . , 5}, is defined by:

Key generation phase: C runs setup ← Init(K). It sets st =⊥. It sends the
pair (setup, st, iguess) to A, which returns ic ∈ J1, 4K \ {iguess}. For all i ∈
J1, 4K\ {ic}, C runs (ski, pki, Πpki) ← KeyGen(setup) and sends the pairs
{pki, Πpki}i∈J1,4K\{ic} to A, which returns (pki, Πpki). C verifies the latest
proof and extracts Pic ’s secret key if iguess = 5.

Shuffle phase: C and A generate PK by running the algorithm DeckGen to-
gether, such that A plays the role of Pic , and C plays the role of the three
other players. If PK =⊥, then C aborts and returns a random bit follow-
ing a Bernoulli distribution with parameter n

iguess
h /(nD − nic

h ). C runs Hi ←

25



GetHand(i, ski, pki,PK) for i = iguess if iguess ̸= 5, otherwise for all i ∈ J1, 4K
and thus recovers Higuess = D \ ∪4i=1Hi.

Challenge phase: C picks b $← {0, 1} and id
$← Higuess if b = 0 or id

$← D\Higuess

and sends id to A, which returns b∗.

Final phase: C returns b = b∗.

Based on the described game, we put forward the following definition for the
security of hand-private in the context of Tarot schemes.

Definition 19. A Trick-Taking scheme W is hand-private if for any polynomial-
time adversary A which plays ExpHandW,A(K, iguess) for all indices iguess ∈ {1, . . . , 5},
the sum

∑5
iguess=1

(
Pr[ExpHandW,A(K, iguess)]− n

iguess
h /(nD − nic

h )
)
is negligible.

Game-privacy: The modifications on this property allows complying with a
model fitting the Tarot scheme. In this definition, we will use K =

(
setup,{

pki, ski, Πpki

}
1≤i≤4;i ̸=ic

, (pkic , Πpkic
),PK

)
and add up the necessary algorithms

into the sequence of execution.

Definition 20. For any K ∈ N, any Trick-Taking scheme W , any quadruplet
of strategies S, any adversary D and any element K =

(
setup, (pkic , Πpkic

),{
pki, ski, Πpki

}
1≤i≤4;i ̸=ic

,PK
)
, ExpTrickTW,S,K,D(K) denotes the same experiment as

ExpTrickTW,S,D(K) except:

1. The challenger and the adversary use the setup and the keys in K instead of
generating fresh setup and keys during the experiment.

2. A has no accomplice.

A Trick-Taking scheme W is said to be game-private if there exists a polynomial
time simulator Sim such that for any tuple of strategies S and any polynomial
time 5-party algorithm D = (D1,D2,D3,D4,D5,D6), |Preal(D, k)−Psim(D, k)| is
negligible, where

Preal(D, k) =

Pr


1← D6(vw) :

setup← Init(K); ic ← D1(setup);
∀i ∈ J1, 4K \ {ic}, (ski, pki, Πpki)← KeyGen(setup);
(pkic , Πpkic

)← D2(setup, {pki, Πpki}i∈J1,4K\{ic}
, vw);

PK← DeckGenP1,P2,P3,P4where Pic is D3(vw); 0/1, n← D3(vw);
(a = 0/1, n)← D3(vw);
ifa = 1: PK← MakeDogP1,P2,P3,P4

(n,PK)where Pic is D4(vw);
K := (setup, (pkic , Πpkic

), {(ski, pki, Πpki)}1≤i≤4;i ̸=ic
,PK);

If PK =⊥, vw :=⊥;
Else b← ExpTrickTW,S,K,D5(vw)

(K);


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Psim(D, k) =

Pr


1← D6(vw) :

setup← Init(K); ic ← D1(setup);
∀i ∈ J1, 4K \ {ic}, (ski, pki, Πpki)← KeyGen(setup);
(pkic , Πpkic

)← D2(setup, {pki, Πpki}i∈J1,4K\{ic}
, vw);

PK← DeckGenP1,P2,P3,P4where Pic is D3(vw); (a = 0/1, n)← D3(vw);
ifa = 1: PK← MakeDogP1,P2,P3,P4

(n,PK)where Pic is D4(vw);
If PK =⊥, vw :=⊥;
Else b← SimTrickT

W,S,D5(vw)
(k, setup, ic, {pki, Πpki}1≤i≤4

,PK, vw);


and where vw denotes the view of D, i.e., all the values sent and received by each
algorithm of D during his interaction with the experiment.

Dog Security:

Definition 21. Let W be a trick-taking scheme with a dog parametrised by a
security parameter K ∈ N. Let A and C be two polynomial time algorithms. The
dog experiment ExpDog

W,A(K) instantiated by W between the adversary A and the
challenger C is defined as follows:

Keys generation phase: C runs setup ← Init(K), sets st =⊥, and sends the
pair (setup, st) to A, who returns a corrupted user index ic ∈ J1, 4K. For
all i ∈ J1, 4K\ {ic}, C runs (ski, pki, Πpki) ← KeyGen(setup). The challenger
sends {pki, Πpki}i∈J1,4K\{ic} to A, who returns (pkic , Πpkic

) and two accom-

plice indices i1a, i
2
a. C verifies the latest proof and extracts the secret key skic

from A’s proof Πpkic
. If both operations succeeded C finally sends ski1a and

ski2a to A.
Shuffle phase: C and A generate PK by running the algorithm DeckGen to-

gether, such that A plays the role of the players Pic ,Pi1a
and Pi2a

, and C
plays the role of the remaining player. If PK =⊥ then C aborts and returns
0. Then A outputs n and both executes MakeDog(n,PK) to output PK′. Fol-
lowing this step C executes Hi ←− GetHand(i, ski, pki,PK

′) for i ∈ J1, 4K.
Final phase: If for all id ∈ D \ ∪4i=1Hi, id /∈ O, C returns 1, else it returns 0.

We say that a tarot protocol is dog-secure if a polynomial adversary has only
negligible advantage to win the above experiment.

E Detailed Tarot Scheme

In this section we formally describe all algorithms of the French Tarot scheme
of Definition 4, this in order to prove the security the protocol in Section G.

Definition 22. Let K ∈ N be a security parameter. The Tarot protocol is a tulpe
of algorithms composed by the following algorithms:

Init(K): Same as in Definition 3.
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KeyGen(setup): It picks dk
$← Z∗

q and computes ek = gdk. Then a proof of knowl-

edge Πek = ZK{dk : ek = gdk} is computed and (sk = dk, pk = ek, Πpk) is
returned.

DeckGen: It is a 4-party protocol, where for all i ∈ J1, 4K the ith party is denoted
as Pi, and takes as input its secret keys and the public keys of all the players
(pki, {pkl}1≤l≤4). This protocol returns a game public key PK, or ⊥.
Phase 1:
– The canonical deck D ∈ Decks is initialized by each player.
– Each user parses D = (id1, . . . , id78) and computes pk =

∏4
i=1 pki, then

for all j ∈ J1, 78K each player computes c0,j ← (g, pk · idj) and set c0 ←
(c0,j)1≤j≤78.

– For each i ∈ {1, 2, 3, 4}, each Pi does in turn: it picks at random a

permutation δi ∈ J1, 78K78, and (ri,j)1≤j≤78
$← (Z∗

q)
78. Pi then computes

ci,j ← Rand(ci−1,δi(j), ri,j , pk) and generates a proof

πi,1 ← ZK
{
(δi, (ri,j)1≤j≤78) : ci,j = Rand(ci−1,δi(j), ri,j , pk)

}
.

Finally, Pi sets ci ← (ci,j)1≤j≤78 and broadcasts (ci, πi,1).
– Each player verifies the proofs (πi,1)1≤i≤4.

Phase 2:
– For all i ∈ J1, 4K, player Pi parses c4 = (c4,j)1≤j≤78 and c4,j = (xj , yj).

– For all j ∈ J1, 72K\J18 · (i− 1) + 1, 18 · iK, each Pi computes θ(i,j) = xski
j ,

πi,2 ← ZK
{
ski :

∧
j∈J1,72K\J18·(i−1)+1,18·iK θ(i,j) = xski

j ∧ pki = gski
}
, then

Pi broadcasts (θ(i,j))j∈J1,72K\J18·(i−1)+1,18·iK and πi,2.
– For all i ∈ J1, 4K, for all l ∈ J1, 4K, for all j ∈ J18 · (l − 1) + 1, 18 · lK,

each Pi computes c∗j ←
(
xj ,

yj∏
1≤γ≤4;γ ̸=l θ(γ,j)

)
, and verifies the proofs

(πγ,2)γ∈J1,4K\{i}. For j ∈ J73, 78K let c∗j = c4,j.
GetHand(n, sk, pk,PK): The algorithm parses PK as (c∗j )1≤j≤78 and returns a

hand H ← {Decsk(c∗j )}j∈J18·(n−1)+1,18·nK.
MakeDog: as specified in Definition 4.
Play(n, id, sk, pk, st,PK): It parses PK = (c∗j )1≤j≤78 and the state element st =

(α, suit, U1, U2, U3, U4). If st =⊥ it sets four empty sets U1, U2, U3 and U4.
Let t ∈ J18 · (n − 1) + 1, 18 · nK be the integer such that id = Decsk(c

∗
t ). It

sets U ′
n = Un ∪ {t}. Note that at each step of the game, the set Un contains

the indices of all the (c∗j )j∈J18·(n−1)+1,18·nK that have already been used by
player n to play a card. For all i ∈ J1, 4K\ {n}, it sets U ′

i = Ui.
If α = 4 or st =⊥ then it sets α′ = 1 and suit′ = id.suit. Else it sets α′ = α+1
and suit′ = suit. The index α states how many players have already played
this round, so if α = 4, players start a new round. Moreover, suit states
which suit is the leading suit of the round, given by the first card played in
the round. This algorithm sets st′ = (α′, suit′, U ′

1, U
′
2, U

′
3, U

′
4). It generates

Π0 = ZK {sk : id = Decsk(c
∗
t )} ,

which proves that the played card id matches one of the ciphertexts in PK
attributed to the player n. Let L ⊂ J1, 78K be a set such that for all l ∈ L,
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suit′ ̸= idl.suit, i.e., L is the set of the indices of the cards that are not of the
leading suit this round. Then it produces:
– If suit′ = id.suit or if |Un ∪ {t}| = 18, it sets Π1 ←⊥ (if the card id is of

the leading suit, then the player can play it in any case ).
– If suit′ ̸= id.suit and |Un ∪ {t}| < 18, it generates

Π1 = ZK

{
sk :

∧
j∈J18·(n−1)+1,18·nK

j ̸∈Un∪{t}

∨
l∈L

idl = Decsk(c
∗
j )

}
.

This proof ensures that the cards that are encrypted in the c∗j are not of
the leading suit, which proves that the player n cannot play a card of the
leading suit.

Finally, it returns the proof Π = (t,Π0, Π1), and the updated value st′.
Verif(n, id, Π, pk, st, st′,PK): It parses st as (α, suit, U1, U2, U3, U4), st′ as (α′,

suit′, U ′
1, U

′
2, U

′
3, U

′
4), the key PK as (c∗j )1≤j≤78, and Π as (t, Π0, Π1). First

checks if t ∈ J18 · (n − 1) + 1, 18 · nK, if not return 0. If st =⊥, it sets four
empty sets U1, U2, U3 and U4. Let L ∈ J1, 78K be a set such that for all l ∈ L,
suit′ ̸= idl.suit, i.e., L is the set of the indices of the cards that are not of the
leading suit. This algorithm first verifies that the state st is correctly updated
in st′ according to the Play algorithm:
– If there exists i ∈ J1, 4K\ {n} such that U ′

i ̸= Ui, then it returns 0.
– If t ∈ Un or Un ∪ {t} ≠ U ′

n, then it returns 0.
– If α = 4 or st =⊥, and α′ ̸= 1 or suit′ ̸= id.suit, then it returns 0.
– If α ̸= 4 and suit ̸=⊥, and α′ ̸= α+ 1 or suit′ ̸= suit, then it returns 0.

This algorithm then verifies the ZKP to check that the player does not cheat
by playing a card it has not, or by playing a card that is not of the leading
suit even though it could play a card of the leading suit.
– If Π0 is not valid then it returns 0.
– If suit′ ̸= id.suit and there exists an integer j ∈ J1, 18K such that (18 ·

(n− 1) + j) ̸∈ Un and Π1 is not valid then it returns 0.
If none of the previous checks fails, then this algorithm returns 1.

GetSuit(st): It parses st as (α, suit, U1, U2, U3, U4) and returns suit.

F Proofs for the Spades Scheme

The proof of Theorem 1 follows from the lemmas of this section. We need to
introduce a few notations in order to prove our main result. Let G0 and G1 be
two probability distributions and A a polynomial time algorithm, we define the
advantage of A in distinguishing in between two experiments as:

AdvindistG0,G1
(A) = |Pr[A(k,G0)]− Pr[A(k,G1)]|.

For the shake of simplicity, in the following proofs we will consider ϵsound =
max(ϵπ∗

sound, ϵ
Π∗
sound), the maximum of the advantage that any probabilistic polyno-

mial time adversary has against the soundness of the proofs of knowledge used
in the protocol. As all are considered negligible so is their maximum.
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Most of the modifications in our game hope are done in the subpart of the
game where C and A will interact to execute the DeckGen algorithm, hence we
will only highlight the modification in this algorithm when nothing is changed
in the rest of the protocol.

Lemma 1. If our Spades protocol is instantiated by proofs of knowledge that
are sound and extractable then it is theft-resistant. The adversary’s advantage
against theft-resistance is bounded by Advth−res

W,S,A (K) ≤ (4 + 13) · ϵextract(K).

Proof. We use the following game hops to show theft-resistant security. We first
recall the conditions to break this property. There exists a play γ ∈ J1, 13K such
that:

1 = Verif(ic, idi,γ , Πic,γ , pkic , stγ , st
′
γ ,PK), (7)

and idi,γ /∈ Hic . (8)

Game 0: This is the Trick-Taking experiment ExpExp
TrickT

W,S,A (K) with the winning
conditions (7) and (8) as describe in the definition of the property.
Game 1: In this game, at the end of phase 1 of the DeckGen algorithm, C will
use the extractor ExtA(πic,1) in order to recover Pic ’s secret random values
(δic , (ric,j)1≤j≤52). If this extraction fails the game is aborted, otherwise C repro-
duce the protocol to checks if the result is the same. Game is also aborted if this
is not true. The difference of outputs between G0 and G1 only occur if Pic has
outputted a valid zero-knowledge proof of a false statement or if the extraction
of the secret by the extractor fails. This has probability ϵextract(K) of happening
and a reduction breaking the soundness of the zero-knowledge proof is straight
forward. As it is assumed that no polynomial time adversary has non-negligible
advantage against this property of the NIZKP, the difference in between the
games is negligible. Finally, AdvindistG0,G1

(A) ≤ ϵextract(K).
Game 2: The same modification can be applied for Pia .
Game 3: This step introduces changes in phase 2 of the DeckGen algorithm.
For the proof provided by the entity Pic , the challenger has extracts the secret
skic = dkic . It can now check whether for all j ∈ J1, 52K\ J13 · (ic−1)+1, 13 · icK,
the equality θ(ic,j) = x

dkic
j holds, if not, C abort the game. The rest of the game

remains unchanged. Soundness of the proof implies that the game has been
modified by the negligible chance that A has to forge a valid zero-knowledge
proof πic,2 for a false statement. We directly obtain the following inequality

AdvindistG3,G4
(A) ≤ ϵextract(K).

Game 4: This is the same modifications as game G3 but this time for Pia . We
reach the same negligible changes as from Game 2 to Game 3.

In Game 4 any action of A during the shuffle phase is verified by the chal-
lenger. If the challenger computation does not match the adversary’s ones, A
losses. The values returned by the adversary throughout the algorithm DeckGen
are then consistent with the protocol and the cards are shuffled correctly. From
condition (8), idi,γ /∈ Hic , we can deduce that in caseA wins their should exist i ∈
J1, 4K\{ic} such that Decdki(c

∗
t ) = idi,γ for some t ∈ J1, 52K\J13·(ic−1)+1, 13·icK.
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But as the shuffle has been conducted consistently, it is impossible to have a sec-
ond ciphertext c∗t′ verifying Decdki(c

∗
t ) = Decdkic (c

∗
t′) = idi,γ with t ̸= t′. Hence,

condition 7 and 8 can only be reached by outputting a valid proof of a false state-
ment during the game phase. This can only be done with a negligible probability
ϵsound(K) by a polynomial time algorithm.
Game 5: When A plays a card (id, Π = (Π0, Π1, t)) associated to a cipher cj as
Pic , C now decrypt the value behind cj with skic and checks if this is coherent
with the given proof Π0. The adversary can try to cheat during any of the 13
turns it plays, hence by a hybrid argument we have AdvindistG5,G6

(A) ≤ 13 ·ϵsound(K)
and as A has no way of winning this concludes the proof. ⊓⊔
Lemma 2. Instantiated by proofs of knowledge that are sound and extractable,
our Spades protocol is cheating-resistant. The adversary’s advantage against this
property is at most AdvcheatW,S,A(K) ≤ 30 · ϵextract(K).
Proof. Let A be an adversary against the cheating resistance of the protocol.
In order to break this property it must output ic, idic,γ , Πic,γ , pkic , st

′
γ , for some

γ ∈ J1, 13K, verifying the conditions:

1. 1 = Verif(ic, idic,γ , Πic,γ , pkic , stγ , st
′
γ ,PK),

2. idic,γ .suit ̸= suitic,γ and suitic,γ ̸=⊥
3. ∃ id ∈ Hic such that:

(a) ∀ l ≤ γ, idic,l ̸= id
(b) id.suit = suitic,γ

Condition 1 must always hold, otherwise the Trick-Taking experiment would
abort during the game phase when this play was received by the challenger. As
we have just proven that our Spades protocol is theft-resistant, we can assume
that A will always play cards form the hand Hic on Pic ’s turn. We show that
AdvcheatA (K) is negligible for any probabilistic polynomial time adversary A by
using the following sequence of games.
Game 0: This is the Trick-Taking experiment with the winning conditions of the
cheating-resistance stated above.
Game 1: Game 0 is append with the modification up to Game 4 of the proof of
Lemma 1. As argued previously Advindistcheat,G0

(A) ≤ 4 · ϵextract(K).
Game 2: After the shuffle, C is now decrypting Pic ’s hand by running GetHand
with skic . Each time A returns a play (idic,γ , Πic,γ = (Π0, Π1, t)) during a turn
γ ∈ J1, 13K, the challenger check that given the cards it knows, A was allowed
to play this card. If it is not, C aborts the game and returns 0. In order to
justify the negligible gap in between Game 1 and Game 2, we make use of a
sequence of 14 games. Set G0 = H0, . . . ,H13 = G1 and for all γ ∈ J0, 13K, Hγ+1

is a copy of Hγ with an additional action of C. In Hγ+1, once the condition
1 = Verif(ic, idic,γ , Πic,γ , pkic , stγ , st

′
γ ,PK) is passed on round γ, C executes the

above described verification by checking the hand of the player. In the case where
it cannot find the cards that was played, C abort the game.

In H13 = G1, the game is aborted if A forged a valid zero-knowledge proof
of an incoherent play. For each step AdvindistHγ ,Hγ+1

(A) ≤ ϵextract(K), hence

AdvindistHγ ,Hγ+1
(A) ≤ 2 · ϵextract(K).
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Thus, we obtain an upper bound on the distinguishability of games G1 and
G2:

AdvindistG1,G2
(A) ≤ 13 · (2 · ϵextract(K)).

Only valid proof of valid statements were produced during the experiment.
Thus, the verification at each step provides that for all t ∈ Uic , for all j ∈ J1, 13K
we have a valid proof Πj reproduced by C. This implies that all cards in Pic ’s
hand none are of the leading suit i.e., for all id ∈ Hic such that ∀ l ≤ γ, idic,l ̸= id
we know that id.suit ̸= suitic,γ .

Hence, conditions 2 and 3 can no longer be verified if condition 1 holds in
game 2. This concludes the proof as no adversary would be able to win this
game. Adding up the advantages, we obtain AdvcheatW,S,A(K) ≤ 30 · ϵextract(K).

⊓⊔

Lemma 3. If our Spades protocol is instantiated by proofs of knowledge that
are sound, extractable and zero-knowledge, and assuming hardness of the DDH
problem, then the protocol is unpredictable.

Proof. These proof uses the previous arguments invoked in the demonstration of
indistinguishability. We show that for each of the four indices iguess ∈ {1, 2, 3, 4},
the adversary has negligible chance make a better guess than by picking ran-
domly.
Game 0: This is the unpredictability experiment ExpunpW,S,A(K, iguess).
Game 1: In this game, at the end of phase 1 of the DeckGen algorithm, C will use
the extractor in order to recover Pic ’s secret random values (δic , (ric,j)1≤j≤52).
From these values, C reproduce the protocol to checks if the result is the same.
Game is aborted if the extraction fails or if the results are not consistent with the
received values. As justified above this leads to AdvindistG0,G1

(A, iguess) = ϵextract(K).
Game 2: We are making the same modification but this time for Pia . Just like
in the previous step, AdvindistG1,G2

(A, iguess) = ϵextract(K).
Game 3: This step introduces changes in phase 2 of the DeckGen algorithm.
For the proof provided by the entity Pic at the beginning of the experiment,
C has extracted the secret skic = dkic . It can now check whether for all j ∈
J1, 52K \ J13 · (ic − 1) + 1, 13 · icK, the equality θ(ic,j) = x

dkic
j holds, if some of

these equalities do not match, C abort the game. The rest of the experiment
remains unchanged. Soundness of the proof implies that the game has been
modified by the negligible chance that A has to forge a valid zero-knowledge
proof πic,2 for a false statement. We directly obtain the following inequality

AdvindistG2,G3
(A) ≤ ϵextract(K).

Game 4: The same modification as in Game 3 is made regarding player Pia .
In order to finish this proof two scenario need to be investigated. The first

one will assume that the last player to shuffle is simulated by C, the second
consider the case where this last player is controlled by the adversary.

Case ic, ia ∈ {1, 2, 3}: In this case the entity P4 is run honestly by the chal-
lenger. This means that the last shuffle, using δ4 is performed following the
prescribed algorithm and δ4 picked at random. This completely randomise the

32



previous (potentially maliciously chosen) shuffles used by A. We can directly
conclude the proof for this case as the last permutation is always random and
will send each ciphertext c4,j (respectively each card idj) uniformly to one of the
52 possible positions of our ordered set (c4,j)j∈J1,52K (resp. (idj)j∈J1,52K). From
the previous steps we know that A has followed the protocol, hence was not able
to duplicate any card. This concludes our case as it is impossible for A to predict
the outputted values after the last random permutation.

Case ic = 4 or ia = 4: We follow the following logic: given that the ElGamal
encryption is IND-CPA, A learns nothing on the cards underlying the cipher-
texts, hence, A’s permutations cannot be chosen better than random. For that
we replace the values that A sees after C’s shuffle by random values, we latter
remove them in order for A to recover his cards. We are showing that send-
ing random elements lead to a negligible change due to the DDH hypothesis.
Our scheme does not use the ElGamal encryption as a black box, thus reduce
ourselves to the DDH problem instead of using its IND-CPA security.
Game 5: During the key generation phase, C randomly chooses two index i1, i2 ∈
{1, 2, 3}. IfA claims one of these two role for ia or ic the game is aborted. This has
probability 7/12 of happening, hence, 7/12·AdvunpG4,A(K, iguess) = AdvunpG5,A(K, iguess).

For the rest of this proof we assume that ic = 4 or ia = 4.
Game 6: Let i1, i2 ∈ {1, 2, 3, 4} \ {ia, ic}, with i1 ≤ i2. We are now making
some changes in the behaviours of the challenger while acting as the hon-
est player Pi1 . During part 1 of the DeckGen algorithm, on receiving ci1−1, it
parses it as (ci1−1,j)1≤j≤52 = (xj , yj)1≤j≤52. C will then draw a random vector

(Zi1,j)1≤j≤52
$← G52 and the usual δi1 , (ri1,j)1≤j≤52. Then ci1,j ← Rand((xδi1 (j)

,
Zδi1 (j)

· yδi1 (j)), ri1,j , pk) is computed. Then C uses the simulator in order to
obtain a proof πi1,1 ←− Sim(ci1−1, ci1 , pk). Finally, we return (ci1 , πi1,1) to the
adversary. The value Zi1,j completely hide the underlying message of the cipher-

text as Zi1,j · yδi1 (j) = (Z · idδi1◦...◦δ1(j)) · pk
∑i1

l=1 rl , for some integers rl that are
introduced through the randomness of the previous players.

During the second phase of DeckGen we are making the following changes:
in order to let the adversary recover the values for its cards we compute θi1,j =

Zδ4◦...◦δi1 (j) · dk
∑4

l=1 rδl◦...◦δ1(j)

i1
for j ∈ J1, 52K \ J13 · (i1 − 1) + 1, 13 · i1K. C parses

c4 as (c4,j)j∈J1,52K and c4,j as (xj , yj), using the simulator the challenger produces
πi1,2 ←− Sim({θi1,j , xj}j , eki1), finally, sends ({θi1,j}j∈J1,52K\J13·(i1−1)+1,13·i1K, πi1,2)
to A. The remaining part of the game is unchanged.

Reduction: we define a sequence of games G4 = H0, . . . ,H52 = G5 where
G4 denotes the Game 4 and G5 the Game 5. For all j ∈ J1, 52K, let Hj be
a challenge to A, where only the j first elements of ci1−1 are modified using

the random vector Z
$← G52. The elements out of this range stay still. Latter,

knowing the permutations δia and δic we will only modify the θi1,l, for which
there exist k ≤ j such that l = δ4 ◦ . . . ◦ δi1(K), i.e., the elements associated
by the permutations to the previous ones. This definition is coherent with the
equalities G4 = H0 and G5 = H52. In the first equality, no element is actually
modified in H0 as j = 0, thus it still the Game 4. The second one holds as for
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j = 52 we have applied the random value Z on the full length of the ciphertext
ci1−1, like in G5. Latter the challenger uses the values Z to compute the values
θi1,l, for 1 ≤ l ≤ 52. Hence, all actions conducted in G5 matches the one we are
doing in H52.

We will provide a reduction in between games Hj and Hj+1 for all j ∈ J0, 51K.
Consider the DDH triple (X,Y, Z), where X = ga, Y = gb and Z is either gab

or a random element of G. We will build an algorithm B breaking the DDH
problem based on a distinguisher D distinguishing in between games Hj and
Hj+1. Our adversary start by receiving a challenge triple (X,Y, Z) from the
challenger CDDH. Then, it does the following:

Key generation phase: First B receives the corrupted player index ic. Then B
claims the DDH challenge (X,Y, Z), it uses the first value to set its encryption
key eki1 = X and generates the keys (ski2 , pki2), (skia , pkia) ←− KeyGen(K)
for i2 and ia using the key generation algorithm. A zero-knowledge proof for
the encryption key of Pi1 is generated using the simulator, Πeki1

←− Sim(eki1)
and we set pki1 = (eki1 , Πeki1

). The key {pki}i=i1,i2,ia and iguess are sent
to D. The distinguisher’s response should be the index ia with the elements
pkic , Πekic . The latest proof is checked, then dkia is sent by B and id and are
received from D.

Shuffle phase: B is first checking the proof Πekic outputted by A, initialize
the canonical deck D = (id1, . . . , id52), computes pk = ek1 · ek2 · ek3 · ek4 and
c0,j ← (g, pk · idj). And set c0 ← (c0,j)1≤j≤52.

Phase 1: For i in J1, 4K:
– If i ∈ {ic, ia}, D returns (ci, πi,1), then B checks the proof πi,1

that was outputted by the adversary. Then it executes ExtA(πi,1) −→
(δi, (ri,)1≤l≤52). B executes c′i,l ← Rand(ci−1,δi(l), ri,l, pk) and checks
if ci,l = c′i,l for all l ∈ J1, 52K. If the proof does not verify or if the
equality does not hold then return a random bit from a Bernoulli
distribution of parameter p = 1/4.

– If i = i1, on receiving ci1−1 = (ci1−1,l)1≤l≤52 = (xl, yl)1≤l≤52. B
draws randomly the elements (Zi1,l)1≤l≤52

$← Gj , δi1 , (ri1,l)1≤l≤52.
Then ci1,l ← Rand((xδi1 (l)

, Zi1,δi1 (l)
· yδi1 (l)), ri1,l, pk) is computed

for all 1 ≤ l < j. We also compute ci1,j ← Rand((xδi1 (j)
, Z · yδi1 (j)),

ri1,j , pk) and ci1,l ← Rand(ci1−1,δi1 (l)
, ri1,l, pk) for all j < l ≤ 52. Set

ci1 = (ci1,l)1≤l≤52. Then B uses the simulator in order to produce a
zero-knowledge proof πi1,1 ←− Sim(ci1−1, ci1 , pk). Finally, (ci1 , πi1,1)
is returned to D.

– If i = i2, D executes the protocol as usual.

Phase 2: On receiving c4, B parses it as (c4,l)1≤l≤52 and each c4,l as (xl, yl).
First we define δ = δ4 ◦ . . . ◦ δi1 . We set, θi1,δ(l) = Zi1,l for all 1 ≤

l < j, θi1,δ(j) = Z and θi1,δ(l) = ek
∑4

i=1 rδi◦...◦δ1(i)

i1
(= x

dki1
δ(l) ) for all j <

l ≤ 52 and given that dki1 is unknown but all the randomness have
been extracted in phase 1. B uses the simulator to obtain the proof
πi1,2 ←− Sim({xl, θ(i1,l)}l∈J1,52K\J13·(i1−1)+1,13·i1K, eki1). Also, the elements
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θ(i2,l) = x
dki2
l for l ∈ J1, 52K \ J13 · (i2− 1)+ 1, 13 · i2K are computed with

their associated zero-knowledge proof

πi2,2 ← ZK

dki2 :
∧

l∈J1,52K\J13·(i2−1)+1,13·i2K

θ(i2,l) = x
dki2
l

 .

Values (θ(i1,l))l∈J1,52K\J13·(i1−1)+1,13·i1K, (θ(i2,l))l∈J1,52K\J13·(i2−1)+1,13·i2K,
πi1,2 and πi2,2 are broadcasted to D. Then, the adversary outputs the val-
ues (θ(ic,l))l∈J1,52K\J13·(ic−1)+1,13·icK, (θ(ia,l))l∈J1,52K\J13·(ia−1)+1,13·iaK and

πic,2, πia,2. For i = ic, ia, B verifies the proof πi,2, executes Ext
A(πi,2) −→

dki, and computes θ′(i,l) = xdki
l for all l ∈ J1, 52K\ J13 · (ic−1)+1, 13 · icK.

It checks if θ′(i,l) = θ(i,l). If these equalities do not hold then B returns

a random bit. Then, for all l ∈ J1, 4K, for all l ∈ J13 · (l − 1) + 1, 13 · lK,

B computes c∗l ←

(
xl,

yl∏
1≤γ≤4;γ ̸=l

θ(γ,l)

)
. B send PK← (c∗l )1≤l≤52 to D as

the result of this algorithm. If the result obtain by D and B for PK is
different or equal to ⊥, B returns a random bit.

Final phase: D returns a bit after these interactions; we forward this bit to
the challenger of the DDH problem.

Introducing the DDH challenge (X,Y, Z) in particularly Z in the jth element
of ci1−1, we simulate game Hj−1 if this element corresponds to the real Diffie-
Hellman of X and Y . If this value was random we will obtain a simulation of
game Hj as ci1,δi1 (j) is given back to the adversary as a random value. Hence,
this reduction provides that if there exist an adversary distinguishing in between
games Hj−1 and Hj , B is breaking the DDH problem with same probability. This

gives:AdvindistG4,G5
(A, iguess) ≤ 52 · AdvDDH(K).

Conclusion: Since we replay all actions of A, it has to follow the shuffle proto-
col, its capability are reduced to apply chosen randomization values and permu-
tation that could influence the final order of the cards. This was already enough
to conclude for the case where ic, ia ∈ {1, 2, 3}. We proceeded to further reduc-
tion in the other cases. Indeed, the adversary could still gain an advantage if
it was playing last during the first phase of shuffle as it determines the final
order of the cards. In Game 6, after Pi1 ’s turn, A sees only random values when
it shuffles. Hence, the adversary learns no information about the final dealing
given that cards it has to shuffle are in an unknown random order, thus, it can-
not influence the outputs with some wise choice on δic , δia and (ric,j)1≤j≤52,
(ria,j)1≤j≤52. Here AdvunpG6,A(K) = 0. We have provided reductions that lead to
Game 6 with each time a negligible upper bound in the adversary’s advantage
against the indistinguishability with the original game, this allows us to conclude
that:

AdvunpW,A(K, iguess) ≤ 4 · ϵextract(K) + 12/7 · 52 · AdvDDH
A (K)

for each of the possible index. Hence, the sum for all index is also negligible. ⊓⊔
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Lemma 4. Assuming hardness of the DDH problem. If our Spades protocol is in-
stantiated by proofs of knowledge that are sound, extractable and zero-knowledge,
then it is hand-private.

Proof. The aborting condition PK =⊥ of the shuffle phase always generates a
random bit, hence this gives no advantage to our adversary. An adversary making
the game abort each time will always lose, hence A should allow derivation of the
public information PK = {c∗j}j∈J1,52K with non-negligible probability. Unlink in
the previous experiments, our adversary A does not have an accomplice. Hence,
A plays Pic and C the rest of the players. Let us define a sequence of games in
order to prove the hand-privacy of our Spades protocol.
Game 0: This is the hand-privacy experiment of definition 12.
Game 1: We want to make sure that the outputted values of A are following
the requirement of the protocol. This is the same arguments as stated before in
proof of Lemma 3. A has no accomplice hence only the proofs πic,1 and πic,2

need to be checked by C. This leads to AdvindistG1,G2
(A) ≤ 2 · ϵextract(K).

The remaining of the proof will focuses on hiding the underlying messages
of the ciphertext such that A cannot guess the order of the cards from the
ciphertexts it sees. Let i1, i2, i3 ∈ {1, 2, 3, 4} \ {ic}, with i1 < i2 < i3.
Game 2: We first make changes in the behaviours of the challenger while act-
ing for the honest player Pi1 . During part 1 of the DeckGen algorithm, on ob-
taining ci1−1, it parses it as (ci1−1,j)1≤j≤52 = (xj , yj)1≤j≤52. C will then draw

a random vector (Zi1,j)1≤j≤52
$← G52 and the usual δi1 , (ri1,j)1≤j≤52. Then

ci1,j ← Rand((xδi1 (j)
, Zδi1 (j)

· yδi1 (j)), ri1,j , pk) is computed. Then C uses the
simulator in order to obtain a proof πi1,1 ←− Sim(ci1−1, ci1 , pk). Finally, C re-
turns (ci1 , πi1,1) to the adversary.

Then during the second phase of DeckGen, in order to let the adversary
recover the values for cards in its hand, C computes the θi1,j = Zδ4◦...◦δi1 (j) ·

ek
∑4

l=1 rδl◦...◦δ1(j)

i1
for j ∈ J13 · (ic− 1)+1, 13 · icK, for all j ∈ J1, 52K \ (∪i=i1,icJ13 ·

(i − 1) + 1, 13 · iK) the θi1,j are draw randomly. We parse c4 as (c4,j)j∈J1,52K
and c4,j as (xj , yj). Then using the simulator the challenger produces πi1,2 ←−
Sim({θi1,j , xj}j , eki1). Finally, C sends ({θi1,j}j∈J1,52K\J13·(i1−1)+1,13·i1K, πi1,2) to
A. The remaining part of the game is conducted as previously.

Doing so, we completely hide the cards in the challenger’s hands to the
adversary’s as C have outputted random values θi1,j for j ∈ J1, 52K\ (∪i=i1,icJ13 ·
(i− 1) + 1, 13 · iK) and that the c∗4,j with j ∈ J13 · (i1 − 1) + 1, 13 · i1K are hidden
by some random values.

Reduction: This reduction is similar to one that was described previously ex-
plained in proof of Lemma 3.

Game 4: We proceed to the same modification for Pi2 .
Game 5: We proceed to the same modification for Pi3 .

Conclusion: Finally, as A sees only random values for the challenger’s hands, it
has no other option than returning values following the scheme specifications, do-
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ing better than randomness is impossible unless it is able to decrypt the player’s
cards. We can conclude to the total advantage of any adversary is less than:

Advh−priv
A (K, iguess) ≤ 3 · ϵsound(K) + 78 · AdvDDH(K).

⊓⊔

Definition 23 (n-IND-CPA). Let k be a security parameter. Let G be a mul-

tiplicative group of prime order q and g ∈ G be a generator and (dk, ek)
$←

KeyGen(K) an instance of keys. Given an instance of n messages m1, . . . ,mn ∈
G, the n-indistinguishability under chosen plaintext attack (n-IND-CPA) prob-

lem is to distinguish in between (Encek(mi))i∈J1,nK and (ri)
$← (G × G)n. The

n-IND-CPA assumption states that there exists no polynomial time algorithm that
solves the n-IND-CPA problem with a non-negligible advantage even if allowed to
choose the input messages.

Property 2. For any n ∈ N, n-IND-CPA holds under the IND-CPA assumption
(and then also under the DDH assumption).

Proof. We use a hybrid argument. Consider the following problem:

(j, n)-IND-CPA problem: Let k be a security parameter. Let G be a multiplica-

tive group of prime order q and g ∈ G be a generator and (dk, ek)
$← KeyGen(K)

an instance of keys. Let j ∈ N be such that 0 ≤ j ≤ n. Given an instance of n
messages {mi, hi,b}1≤i≤n such that for all i ∈ J1, nK, such that:

– if i ≤ j, hi,0
$← G2 and hi,1 ←− Encek(mi),

– else, hi,1
$← G2 and hi,0 ←− Encek(mi).

Let Adv(j,n)-IND-CPA(K) (resp. Advn-IND-CPA(K), AdvIND-CPA(K)) be the advantage
of the best algorithm that solves the (j, n)-IND-CPA (resp. n-IND-CPA, IND-CPA)
problem. Let (j, n) be a couple of positive integers such that 0 ≤ j ≤ n −
1. For any adversary that solves the (j, n)-IND-CPA problem with advantage

Adv
(j,n)-IND-CPA
A (K), we build the algorithm B that tries to solve the IND-CPA

problem.

Algorithm B(G, g, ek,m, h): This algorithm picks b′
$← {0, 1}, then for all

i ∈ J1, nK\{j + 1} it picks mi
$← G and sets:

– if i ≤ j, it picks hi,0
$← G2 and sets hi,1 = Encek(mi)

– else, hi,1
$← G and hi,0 = gai·bi .

It sets mj+1 = m, and hj+1,1 = hj+1,0 = h. Then it runs the adversary: b∗
$←

A({(gi,1, gi,2, hi,b)}1≤i≤n) and returns b∗.
We then deduce that:

AdvIND-CPA
B (K) =

∣∣∣Adv(j,n)-IND-CPA
A (K)− Adv

(j+1,n)-IND-CPA
A (K)

∣∣∣ .
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Hence,

AdvIND-CPA
B (K) ≥

∣∣∣Adv(j,n)-IND-CPA
A (K)− Adv

(j+1,n)-IND-CPA
A (K)

∣∣∣
which implies

n · AdvIND-CPA
A (K) ≥ Advn-IND-CPA

A (K).

This concludes the proof. ⊓⊔

Lemma 5. Instantiated by proofs of knowledge that are sound, extractable and
zero-knowledge, our Spades protocol is Game-private under the DDH assumption.

Proof. We first recall that K = (setup, pkic , {ski, pki, Πek}1≤i≤4;i ̸=ic ,PK) and
consider the experiment ExpTrickTW,S,K,D(K) modified according to the definition.
This game will also be denoted as Game 0.
Game 1: We modify Game 0 and particularly the behaviours of the first honest
player that we will call Pi1 . The rest of the game remains the same. During part 1
of the DeckGen algorithm, on obtaining ci1−1, it parses it as (ci1−1,j)1≤j≤52 =

(xj , yj)1≤j≤52. C will then draw a random vector (Zi1,j)1≤j≤52
$← G52 and

the usual δi1 , (ri1,j)1≤j≤52. Then ci1,j ← Rand((xδi1 (j)
, Zδi1 (j)

· yδi1 (j)), ri1,j , pk)
is computed. Then C uses the simulator in order to obtain a proof πi1,1 ←−
Sim(ci1−1, ci1 , pk). Finally, we return (ci1 , πi1,1) to the adversary.

Then during the second phase of DeckGen, in order to let the adversary
recover the values for cards in its hand, we will compute the θi1,j = Zδ4◦...◦δi1 (j) ·

ek
∑4

l=1 rδl◦...◦δ1(j)

i1
for j ∈ J13 · (ic− 1)+1, 13 · icK, for all j ∈ J1, 52K \ (∪i=i1,icJ13 ·

(i − 1) + 1, 13 · iK) the θi1,j are draw randomly. We parse c4 as (c4,j)j∈J1,52K
and c4,j as (xj , yj). Then using the simulator the challenger produces πi1,2 ←−
Sim({θi1,j , xj}j , eki1). Finally, we send ({θi1,j}j∈J1,52K\J13·(i1−1)+1,13·i1K, πi1,2) to
A. The remaining part of the game is conducted as previously.

Doing so, we are completely hiding the cards in the challenger’s hands to the
adversary’s as we have outputted random values θi1,j for j ∈ J1, 52K\(∪i=i1,icJ13·
(i− 1) + 1, 13 · iK) and that the c∗4,j with j ∈ J13 · (i1 − 1) + 1, 13 · i1K are hidden
by some random values.

Construction of SimTrickT
W,S,A(vw) (K, setup, ic, {pki}1≤i≤4,PK, vw):

Key generation phase: The simulator try to deduce from vw the value dkic
such that for all j ∈ J13 ·(ic−1)+1, 13 ·icK, idj′ = Decdkic (cj). The simulator
does not abort at this point even if it cannot find dkic correctly. It sets st =⊥.
It sends (setup, st) to D1 and for all i ∈ J1, 4K \ {ic} latter sends (pki, Πeki)
to D2 where Πeki was produced using the simulator of the zero-knowledge
proof.

Shuffle phase: C sends PK to the adversaryD3. It computesHic ←− GetHand(ic,
skic , pkic ,PK) after extracting dkic ←− Ext(Πekic ) if it does not already know
it. For all i ∈ {1, 2, 3, 4} \ {ic}, the simulator picks Hi at random such that
|Hi| = 13 and Hi ⊂ {idl}1≤l≤52 \ (Hic ∪ (∪i−1

l=1,l ̸=ic
Hl)).
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Game phase: The simulator sets γ = 0 and played =⊥. The simulator defines
the first player index p∗ = 1 and set p = p∗. Then for all j ∈ J1, 52K:
If p ̸= ic: The simulator runs id ← Stratp(played, Hp, p∗, p), it parses st as

(α, suit, U1, U2, U3, U4), then it processes as the algorithm (Π, st′) ←
Play(p, id, skp, pkp, st,PK) except that:
– It picks t at random in J13 · (p− 1) + 1, 13 · pK.
– It computes Π0 using the simulator Π0 ← Sim(c∗t , id, ekp).
– If suit′ ̸= id.suit and |Ui ∪ {t}| ≠ 13, it computes Π1 using the

simulator Sim to produce Π1 ←− Sim({c∗j ,Decdkp(c∗j )}j ̸∈Un∪{t}, ekp).
Otherwise, it set the proof Π1 =⊥.

Set Π = (t,Π0, Π1) and send (id, Π, st′) to A and updates st := st′.
Finally, it updates the index p that points the next player according to
the rule of Spades. It then parses played as (pl1, . . . , pln) (where n =
|played|) and updates played := (pl1, . . . , pln, id).

If p = ic: The simulator processes as in Game 1.
Final phase: The simulator returns 0.

Assume that there exists a distinguisher D = (D1,D2,D3,D4,D5) such that
|PGame 1(D, k) − Psim(D, k)| = λ(K) where λ is non-negligible. We show how to
build an algorithm B that solves the 52-IND-CPA problem with non-negligible
advantage.

First notice that the differences in betweenGame 1 and above defined simula-
tor is the generation of zero-knowledge proof and the random ciphertexts played
as another card. The proof Π0 produced at each turn of the challenger creates a
association in between a random ciphertext c∗j with j ∈ J13 ·(i−1)+1, 13 · iK and
a card idv ∈ {idl}1≤l≤52 \Hic that would be played according to the strategy.

Construction of B: It will interact an 52-IND-CPA challenger C52−IND-CPA and
a tuple of algorithm D = (D1,D2,D3,D4,D5) that is capable in distinguishing
in between Game 1 and our simulator. We show that building on D’s answer we
can construct an adversary winning with non-negligible probability against the
indistinguishability of 52− IND-CPA. We denote the index of the honest player
controlled by B by i1, i2, i3 ∈ {1, 2, 3, 4} \ {ic} such that i1 < i2 < i3.

Key generation phase: This algorithm sets st =⊥. It sends setup to D1 which
returns the corrupted index ic. Then B draw random values si for all i ∈
J1, 4K \ {ic} and sets eki = eksi , where ek is the key sent by the challenger of
the 52-IND-CPA game. It simulates Πeki ←− Sim(eki, g) for all i ∈ J1, 4K \ {ic}
and sends (setup, {pki, Πeki}i ̸=ic , vw) to D2 and obtains pkic = (ekic , Πekic )
as its answer. B checks the latest proof Πekic and extracts the decryption
key dkic .

Shuffle phase: B initialize the canonical deck D = (id1, . . . , id52), computes
pk = ek1 · ek2 · ek3 · ek4 and c0,j ← (g, pk · idj). It sets c0 ← (c0,j)1≤j≤52.
Phase 1: For all i ∈ J1, 4K:

– If i = ic, D returns (cic , πic,1), then B checks the proof πic,1 that

was outputted by the adversary. Then it executes ExtA(πic,1) −→
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(δi, (ric,)1≤j≤52). B executes c′ic,j ← Rand(cic−1,δic (j)
, ric,j , pk) and

checks if cic,j = c′ic,j for all j ∈ J1, 52K. If the proof does not verify
or if the equality does not hold then B returns a random bit.

– If i = i1, when the adversary played before, B uses the previously ex-
tracted permutation to set δ = δic else it sets δ to the identity if i1 =
1 and sends (idδj)j∈J1,52K) to C52−IND-CPA. The challenger returns a
vector (c′j)j∈J1,52K, B parses each c′j = (x′

j , y
′
j) and sets c′i1 = (x′

j , y
′
j =

y
bi1+bi2+bi3
j ·x

′skic
j · id−b1−b2−b3+1

δ(j) ). B draws random elements δi1 and

(ri1,j)1≤j≤52, for all j ∈ J1, 52K, set ci1,j ← Rand(c′i1 , ri1,j , pk), set
ci1 = (ci1,j)1≤j≤52. Then B uses the simulator in order to produce a
zero-knowledge proof πi1,1 ←− Sim(ci1−1, ci1 , pk). Finally, (ci1 , πi1,1)
is returned to D.

– If i = i2, B executes the protocol as usual.
Phase 2: On receiving c4, B parses it as (c4,j)1≤j≤52 and each c4,j as (xj , yj).

For player Pi1 , B sets δ = δ4 ◦ . . . ◦ δ1, sets θi1,j
$← G∗ for all j ∈ J1, 52K \

(∪i=i1,icJ13·(i−1)+1, 13·iK), and θi1,j = yj ·
(
idδ(j) · x

(dki2+dki3+dkic )
j

)−1

for all j ∈ J13 ·(ic−1)+1, 13 ·icK. Then algorithm B uses the simulator to
produce the proof πi1,2 ←− Sim({xj , θ(i1,j)}j∈J1,52K\J13·(i1−1)+1,13·i1K, eki1).

For i = i2, i3, B computes θ(i,j) = xdki
j for j ∈ J1, 52K\J13·(i−1)+1, 13·iK

and their proofs πi,2 ← ZK
{
dki :

∧
j∈J1,52K\J13·(i−1)+1,13·iK θ(i,j) = xdki

j ∧ pki = gski
}
.

The values (θ(i,j))j∈J1,52K\J13·(i−1)+1,13·iK and πi,2 are broadcasted for all
i = i1, i2, i3. D returns (θ(ic,j))j∈J1,52K\J13·(ic−1)+1,13·icK and πic,2.

B verifies the proof πic,2, executes ExtA(πic,2) −→ dkic , and computes

θ′(ic,j) = x
dkic
j for all j ∈ J1, 52K \ J13 · (ic − 1) + 1, 13 · icK. It checks if

θ′(i,j) = θ(i,j), if false B returns a random bit.

Then, for all j ∈ J1, 4K, for all j ∈ J13 · (j − 1) + 1, 13 · jK, B computes

c∗j ←

(
xj ,

yj∏
1≤γ≤4;γ ̸=l

θ(γ,j)

)
. B send PK ← (c∗j )1≤j≤52 to D as the result

of this algorithm. If the result obtain by D and B for PK is different or
equal to ⊥, B returns a random bit.

Game phase: B sets p equal to the first player index p∗ = 1, γ = 0 and
played =⊥. For j ∈ J1, 52K:
If p ̸= ic: B runs id ← Stratp(played, Hp, p∗, p), then it processes as in the

algorithm (Π, st′)← Play(p, id, skp, pkp, st,PK, D) except that:
– It chooses t at random instead than setting t to the coherent value.
– It computes proofs Π0 and Π1 as in the above defined simulator

SimTrickT
W,S,A(vw)(K, setup, s, {pki}1≤i≤4 ,PK, vw).

It sets Π = (t,Π0, Π1) and sends (Π, st′) to D4. Then it updates st := st′

and the index p that points the next player according to the rule of
Spades. It then parses played as (pl1, . . . , pln) (where n = |played|) and
updates played := (pl1, . . . , pln, id).

If p = ic: B processes as in ExpTrickTW,S,K,D(K).
Final phase The simulated experiment returns 1.
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Finally, B runs b∗ ← D5(vw), where vw denotes all the values send and received
by D during its interaction with the simulated experiment, then B returns b∗.

Note that an adversary solving the 39-IND-CPA problem can solve the 52-
IND-CPA problem.

Analysis: We distinguish two cases:

– The adversary forges a proof of a false statement during the DeckGen proto-
col. In this case, if D does not produce a valid proof for the false statement,
then PK = ⊥ so the experiment aborts, hence the advantage of B is lower
than 2 · ϵsound(K).

– The adversary does not forge a proof of a false statement during the DeckGen
protocol. In this case, if PK =⊥ then D5 has no information hence cannot
do better than answering randomly. Now, assuming that PK ̸=⊥ and b = 1,
for all v ∈ J1, 52K, there exist i ∈ J1, 4K and j ∈ J13 · (i − 1) + 1, 13 · iK such
that idv = Decdki(c

∗
4,j).

In the following, we show that in this case, the advantage of B is lower than
2 · ϵ39−IND−CPA(K). If b = 1, then the experiment is perfectly simulated, else,
the simulator is perfectly simulated. We observe that:

Pr[B wins] =
1

2
(Pr[1← D5(vw)|b = 1] + Pr[0← D5(vw)|b = 0])

=
1

2
(Pr[1← D5(vw)|b = 1] + 1− Pr[1← D5(vw)|b = 0]) .

Finally: ∣∣∣∣Pr[B wins]− 1

2

∣∣∣∣ = 1

2
· |Preal(D, k)− Psim(D, k)| =

λ(K)

2
.

The two cases imply that the advantage of B is lower than 2(ϵ39−IND-CPA(K) +
ϵsound(K)), which concludes the proof. ⊓⊔

G Proof for the Tarot Scheme

The Tarot protocol relies on the security model highlighted in Section 4.2 and
formally described in Appendix D. Here we prove Theorem 2 by proving the
lemmas of this section. As our Tarot protocol share a common structure with
our Spades protocol arguments are directly adapted form the previous security
considerations. Some part of the below proofs follows directly from previously
presented reductions.

We assume that the adversary A determines the taker and its bets. Hence,
it is able to simulate all type of scenario at needs regarding the bets. Depending
on the announcements two cases have to be distinguished: When garde sans or
garde contre is picked by A and the second case when petite or garde is chosen.
In the latest case, the shuffle protocol DeckGen continue through Part 4. Also,
additional consideration need to be done: the taker could be simulated by the
adversary or by the challenger.
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Lemma 6. If our Tarot protocol is instantiated by proofs of knowledge that
are sound and extractable then it is theft-resistant. The adversary’s advantage
against theft-resistance is bounded by Advth−res

W,S,A (K) ≤ (11 + 18) · ϵextract(K).

Proof. This proof uses similar arguments as in the proof given for Lemma 1.
Now players have 18 cards in their hand, hence the hybrid arguments need to be

adapted. Let iguess ∈ {1, . . . , 5} and the associated experiment ExpExp
TrickT

W,S,A (K, iguess).

Game 0: This is the Trick-Taking experiment ExpExp
TrickT

W,S,A (K, iguess).
Game 1: A has to output a valid zero knowledge proof for Pic ’s key. Under
soundness of the NIZKP used for Πpkic

, we have that the extracted key skic
verifies gskic = pkic . C check this equality and aborts the game if this does not

hold. Thus, AdvindistG0,G1
(A) ≤ ϵextract(K).

The three following games modify the behaviours of the challenger during the
first phase of KeyGen.
Game 2: In this game we decrypt the elements (cic,j)1≤j≤78 using skic obtained
previously. The challenger aborts if {Decskic (cic,j)}1≤j≤78 ̸= D. Under soudness

of the NIZKP, we obtain AdvindistG1,G2
(A) ≤ ϵextract(K).

Game 3: The same is done for Pi1a
, its key have been produced by the challenger,

hence we do not rely on the soudness of any proof before this.
Game 4: Same for Pi1a

. The three following games modify the behaviours of the
challenger during the second phase of KeyGen.
Game 5: Pic secret key skic underlying Pic ’s proof of phase 2 is extracted. C
checks whether for all j ∈ J1, 72K\J18·(ic−1)+1, 18·icK, the equality θ(ic,j) = x

skic
j

holds, if not, C abort the game. We obtain AdvindistG4,G5
(A) ≤ ϵextract(K).

Game 6: Same for Pi1a
.

Game 7: Same for Pi2a
.

Game 8: After the shuffle, C receive a player index iDog, and executes MakeDog
with the adversary. During this protocol, we can assess the right execution of the
protocol by the various players controlled by A. On receiving π′

ic,2
, we extract

pki and reproduce the computations made by A and abort if it does not match.
Game 9: Same for Pi1a

.
Game 10: Same for Pi2a

.
The latest games guaranty that all the three maliciously controlled players have
to behave according to the protocol up to the reveal of the cards in the dog.
Depending on the taker index n, if n ∈ {ic, i1a, i2a} we need the following game:
Game 11: C extract the secret value underlying proof Πn or Πn,2 and reproduce
the computation. If this is not consistent with the return value it aborts.

In Game 11, C has reproduced all the actions of A through the three players
it controls, hence the shuffle have been produced according to the protocol unless
the adversary was able to break soudness of one of the ZKP.
Game 12: When A plays a card (id, Π = (Π0, Π1, t)) associated to a cipher cj as
Pic , C now decrypt the value behind cj with skic and checks if this is coherent
with the given proof Π0. The adversary can try to cheat during any of the 18
turns it plays, hence by a hybrid argument we have AdvindistG11,G12

(A) ≤ 18·ϵsound(K)
and as A has no way of winning this concludes the proof. ⊓⊔
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Lemma 7. Instantiated by proofs of knowledge that are sound and extractable,
our Tarot protocol is cheating-resistant. The adversary’s advantage against this
property is at most AdvcheatW,S,A(K) ≤ 47 · ϵextract(K).

Proof. Game 0: This is the cheating-resistance experiment (i.e., trick-taking ex-
periment with the winning condition associated to the cheating resistance).
Game 1: C copies the behaviours of the challenger in Game 11 in the proof
of lemma 6, the winning condition remains the one associated to the cheating
resistance. As justified before, we obtain AdvindistG0,G1

(A) ≤ 11 · ϵsound(K).
Game 2: During Pic ’s plays, C that knows its hand verifies that the played card is
indeed in the corrupted player’s hand, instead of validating the ZKP. This implies
a negligible modification ϵπ for each of the played cards. The hybrid argument
associated has been given previously. We achieve AdvindistG1,G2

(A) ≤ 18 · ϵsound(K).
Game 3: During Pic ’s plays, C checks that the played card follows the Tarot’s
rules validating the ZKP using the knowledge of Pic ’s hand instead of verifying
the ZKP πic,2. This implies a negligible modification ϵπ for each of the played
cards. The hybrid argument associated has been given previously. We achieve
AdvindistG1,G2

(A) ≤ 18 · ϵsound(K).
At this stage of the game, it becomes impossible for A to plays invalid cards

on Pic ’s turn as the challenger always verifies if it has the card in its hand before
accepting the play. This concludes the proof. We conclude to AdvindistG0,G3

(A) ≤
47 · ϵsound(K). ⊓⊔

Lemma 8. If our Tarot protocol is instantiated by proofs of knowledge that are
sound, extractable and zero-knowledge, and assuming hardness of the DDH prob-
lem, then the protocol is unpredictable and AdvUnp

W,A(K, iguess) ≤ 7 · ϵextract(K) +
78 · AdvDDH

A (K).

Proof. Let iguess ∈ {1, . . . , 5} and the associated experiment ExpUnpre
W,A (K, iguess).

We provide a game hope independent of the parameter iguess, this allows us to
provide the same reduction for all cases.
Game 0: Let Game 0 be the is unpredicatability experiment ExpUnpre

W,A (K, iguess).
Game 1: A has to output a valid zero knowledge proof for Pic ’s key. Under
soundness of the NIZKP used for Πpkic

, we have that the extracted key skic
verifies gskic = pkic . C check this equality and aborts the game if this does not

hold. Thus, AdvindistG0,G1
(A) ≤ ϵextract(K).

The three following games modify the behaviours of the challenger during the
first phase of KeyGen.
Game 2: In this game we decrypt the elements (cic,j)1≤j≤78 using skic obtained
previously. The challenger aborts if {Decskic (cic,j)}1≤j≤78 ̸= D. Under soudness

of the NIZKP, we obtain AdvindistG1,G2
(A) ≤ ϵextract(K).

Game 3: The same is done for Pi1a
, its key have been produced by the challenger,

hence we do not rely on the soudness of any proof before this.
Game 4: Same for Pi1a

. The three following games modify the behaviours of the
challenger during the second phase of KeyGen.
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Game 5: Pic secret key skic underlying Pic ’s proof of phase 2 is extracted. C
checks whether for all j ∈ J1, 72K\J18·(ic−1)+1, 18·icK, the equality θ(ic,j) = x

skic
j

holds, if not, C abort the game. We obtain AdvindistG4,G5
(A) ≤ ϵextract(K).

Game 6: Same for Pi1a
.

Game 7: Same for Pi2a
.

The latest games guaranty that all the three maliciously controlled players have
to behave according to the protocol up to the end of the KeyGen protocol. We now
show that it is impossible for an adversary following the prescripted operations
to influence the outcome of the shuffle even when it controls all but one player.
We investigated two scenarios. The first one will assume that the last player to
shuffle is the challenger, while the second case is to consider the case where this
last player is controlled by the adversary.

Case {ic, i1a, i2a} = {1, 2, 3}: P4 is run honestly executed, hence the last step of
the shuffle maps the cards randomly and distribute them uniformly to all players.
This concludes our case as it is impossible for A to predict the outputted values
after the last random permutation nor to influence the position of the cards
afterwards.

Case 4 ∈ {ic, i1a, i2a}: The ElGamal encryption is an IND-CPA cipher, this
means that under encryption, A does not learn the cards underlying a ciphertext.
We have shown that under this consideration,A’s permutations cannot be chosen
better than random as it cannot infer the value of the cards after an honest
shuffle. We prove this statement using the following game.
Game 8: Let iC ∈ {1, 2, 3} be the challenger’s index. We are now making some
changes in the behaviours of the challenger while acting as the honest player
PiC . During part 1 of the DeckGen algorithm, on receiving ciC−1, it parses it as

(ciC−1,j)1≤j≤78 = (xj , yj)1≤j≤78. C will then draw a random vector (ZiC,j)1≤j≤78
$←

G78 and the usual δiC , (riC,j)1≤j≤78. Then ciC,j ← Rand((xδiC (j), ZδiC (j) ·yδiC (j)),

riC,j , pk) is computed. Then C uses the simulator in order to obtain a proof
πiC,1 ←− Sim(ciC−1, ciC , pk). Finally, we return (ciC , πiC,1) to the adversary. The
value ZiC,j completely hide the underlying message of the ciphertext as ZiC,j ·
yδiC (j) = (Z · idδiC◦...◦δ1(j)) · pk

∑iC
l=1 rl , for some integers rl that are introduced

through the randomness of the previous players.
During the second phase of DeckGen we are making the following changes:

in order to let the adversary recover the values for its cards we compute θiC,j =

Zδ4◦...◦δiC (j) · sk
∑4

l=1 rδl◦...◦δ1(j)

iC
for j ∈ J1, 78K \ J18 · (iC − 1) + 1, 18 · iCK. C parses

c4 as (c4,j)j∈J1,78K and c4,j as (xj , yj). Then using the simulator it produces
πiC,2 ←− Sim({θiC,j , xj}j , pkiC ) and sends ({θiC,j}j∈J1,78K\J18·(iC−1)+1,18·iCK, πiC,2)
to A. The remaining part of the game is unchanged.

Reduction: A similar reduction has been presented to prove Lemma 3.
Due to the verification of the ZKP A has to follow the protocol and pick

values to influence its outcome. With the latest modifications, once C proceeds
to its shuffle, it distributes the ciphertext uniformly and hide them using random
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values. In Game 8, A is unable to do better that trying random values as it only
sees random values during the entire shuffle. We lead to the conclusion that
AdvUnp

W,A(K, iguess) ≤ 7 · ϵextract(K) + 78 ·AdvDDH
A (K) for each of the possible index.

Hence, the sum on iguess ∈ {1, . . . , 5} is also negligible. ⊓⊔

Lemma 9. Assuming hardness of the DDH problem. If our Tarot protocol is in-
stantiated by proofs of knowledge that are sound, extractable and zero-knowledge,
then it is hand-private.

Proof. This proof the same arguments as in the proof of Lemma 4, only the
cardinal of the deck is modified, and the index value is set in parameter of the
experiment and not obtained from the adversary. The final advantage for this
lemma is:

Advh−priv
A (K, iguess) ≤ 3 · ϵsound(K) + 3 · 78 · AdvDDH(K).

Lemma 10. Instantiated by proofs of knowledge that are sound, extractable and
zero-knowledge, our Tarot protocol is Game-private under the DDH assumption.

Proof. Let K =
(
setup, (pkic , Πpkic

),
{
pki, ski, Πpki

}
1≤i≤4;i̸=ic

,PK
)
, we consider

the experiment ExpTrickTW,S,K,D(K) modified according to Definition 20. This game
will be denoted as Game 0. In this experiment A controls Pic and C controls the
three other players that we index by i1 < i2 < i3.
Game 1: We modify the behaviours of the first honest player Pi1 . During part 1
of the DeckGen algorithm, on obtaining ci1−1, it parses it as (ci1−1,j)1≤j≤78 =

(xj , yj)1≤j≤78. C will then draw a random vector (Zi1,j)1≤j≤78
$← G78 and

the usual δi1 , (ri1,j)1≤j≤78. Then ci1,j ← Rand((xδi1 (j)
, Zδi1 (j)

· yδi1 (j)), ri1,j , pk)
is computed. Then C uses the simulator in order to obtain a proof πi1,1 ←−
Sim(ci1−1, ci1 , pk). Finally, we return (ci1 , πi1,1) to the adversary.

Then during the second phase of DeckGen, in order to let the adversary re-
cover the values of the cards in its hand, we will compute the θi1,j = Zδ4◦...◦δi1 (j) ·

pk
∑4

l=1 rδl◦...◦δ1(j)

i1
for j ∈ J18 · (ic− 1)+1, 18 · icK, for all j ∈ J1, 78K \ (∪i=i1,icJ18 ·

(i − 1) + 1, 18 · iK) the θi1,j are draw randomly. We parse c4 as (c4,j)j∈J1,78K
and c4,j as (xj , yj). Then using the simulator the challenger produces πi1,2 ←−
Sim({θi1,j , xj}j , pki1). Finally, we send ({θi1,j}j∈J1,78K\J18·(i1−1)+1,18·i1K, πi1,2) to
A. The remaining part of the game is conducted as previously.

Doing so, we are completely hiding the cards in the challenger’s hands to the
adversary’s as we have outputted random values θi1,j for j ∈ J1, 78K\(∪i=i1,icJ18·
(i− 1) + 1, 18 · iK) and that the c∗4,j with j ∈ J18 · (i1 − 1) + 1, 18 · i1K are hidden
by some random values.

With this we also need to modify the values that we return during the
MakeDog algorithm when player Pic takes. In the same way as before when C acts
as Pi1 it produces values θi1,j = Zδ4◦...◦δi1 (j) · pk

∑4
l=1 rδl◦...◦δ1(j)

i1
for j ∈ J73, 78K.

This value works just like in the shuffle DeckGen and uncover the random values
that A sees in the dog.
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Construction of SimTrickT
W,S,A(vw)

(
K, setup, ic, {pki, Πpki}1≤i≤4,PK, vw

)
:

Key generation phase: The simulator starts by setting st =⊥ and sends
(setup, st) to D1, for all i ∈ J1, 4K \ {ic}, it sends (pki, Πpki) to D2 where
Πpki was produced using the simulator of the zero-knowledge proof. On re-
ceiving the pair (pkic , Πpkic

) it extracts the secret value skic from Πpkic
.

Shuffle phase: C sends PK toD3. It computesHic ←− GetHand(ic, skic , pkic ,PK).
If (1, n) was received from D3, the simulator takes random cards for the dog,
reveals them and produces the necessary proofs π5 for all i ∈ J1, 4K \ {ic}.
When n ̸= ic, first it draws hands for the three players it controls: For all
i ∈ {1, 2, 3, 4} \ {ic}, the simulator picks Hi at random such that |Hi| = 18
and Hi ⊂ {idl}1≤l≤78 \ (Hic ∪ (∪i−1

l=1,l ̸=ic
Hl) ∪H5). Then it keeps on picking

random cards within Hn ∪H5, where H5 represent the dog, in order to pro-
duce a valid dog regarding the rules of Tarot. It then simulates the needed
proofs.

Game phase: The simulator sets γ = 0 and played =⊥. The simulator defines
the first player index p∗ = 1 and set p = p∗. Then for all j ∈ J1, 78K:
If p ̸= ic: The simulator runs id ← Stratp(played, Hp, p∗, p), it parses st as

(α, suit, U1, U2, U3, U4), then it processes as the algorithm (Π, st′) ←
Play(p, id, skp, pkp, st,PK) except that:
– It picks t at random in J18 · (p− 1) + 1, 18 · pK.
– It computes Π0 using the simulator Π0 ← Sim(c∗t , id, pkp).

– If suit′ ̸= id.suit and |Ui ∪ {t}| ≠ 18, it computes Π1 using the
simulator Sim to produce Π1 ←− Sim({c∗j ,Decskp(c∗j )}j ̸∈Un∪{t}, pkp).
Otherwise, it set the proof Π1 =⊥.

Set Π = (t,Π0, Π1) and send (id, Π, st′) to A and updates st := st′.
Finally, it updates the index p that points the next player according to
the rule of the French Tarot. It then parses played as (pl1, . . . , pln) (where
n = |played|) and updates played := (pl1, . . . , pln, id).

If p = ic: The simulator processes as in Game 1.
Final phase: The simulator returns 0.

Assume that there exists a distinguisher D = (D1,D2,D3,D4,D5,D6) such
that |PGame 1(D, k)−Psim(D, k)| = λ(K) where λ is non-negligible. We show how
to build an algorithm B that solves the 78-IND-CPA problem with non-negligible
advantage.

First notice that the differences in betweenGame 1 and above defined simula-
tor is the generation of zero-knowledge proof and the random ciphertexts played
as another card. The proof Π0 produced at each turn of the challenger creates an
association in between a random ciphertext c∗j with j ∈ J18 ·(i−1)+1, 18 · iK and
a card idv ∈ {idl}1≤l≤78 \Hic that would be played according to the strategy.

Construction of B: It will interact an 78-IND-CPA challenger C78−IND-CPA and
a tuple of algorithm D = (D1,D2,D3,D4,D5,D6) that is capable in distinguish-
ing in between Game 1 and our simulator. We show that building on D’s answer
we can construct an adversary winning with non-negligible probability against
the indistinguishably of 78− IND-CPA. We denote the index of the honest player
controlled by B by i1, i2, i3 ∈ {1, 2, 3, 4} \ {ic} such that i1 < i2 < i3.
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Key generation phase: This algorithm sets st =⊥. It sends setup to D1 which
returns the corrupted index ic. Then B draw random values si for all i ∈
J1, 4K \ {ic} and sets eki = eksi , where ek is the key sent by the challenger of
the 78-IND-CPA game. It simulates Πeki ←− Sim(eki, g) for all i ∈ J1, 4K \ {ic}
and sends (setup, {pki, Πeki}i ̸=ic , vw) to D2 and obtains pkic = (ekic , Πekic )
as its answer. B checks the latest proof Πekic and extracts the decryption
key dkic .

Shuffle phase: B initialize the canonical deck D = (id1, . . . , id78), computes
pk = ek1 · ek2 · ek3 · ek4 and c0,j ← (g, pk · idj). It sets c0 ← (c0,j)1≤j≤78.

Phase 1: For all i ∈ J1, 4K:
– If i = ic, D returns (cic , πic,1), then B checks the proof πic,1 that

was outputted by the adversary. Then it executes ExtA(πic,1) −→
(δi, (ric,)1≤j≤78). B executes c′ic,j ← Rand(cic−1,δic (j)

, ric,j , pk) and
checks if cic,j = c′ic,j for all j ∈ J1, 78K. If the proof does not verify
or if the equality does not hold then B returns a random bit.

– If i = i1, when the adversary played before, B uses the previously ex-
tracted permutation to set δ = δic else it sets δ to the identity if i1 =
1 and sends (idδj)j∈J1,78K) to C78−IND-CPA. The challenger returns a
vector (c′j)j∈J1,78K, B parses each c′j = (x′

j , y
′
j) and sets c′i1 = (x′

j , y
′
j =

y
bi1+bi2+bi3
j ·x

′skic
j · id−b1−b2−b3+1

δ(j) ). B draws random elements δi1 and

(ri1,j)1≤j≤78, for all j ∈ J1, 78K, set ci1,j ← Rand(c′i1 , ri1,j , pk), set
ci1 = (ci1,j)1≤j≤78. Then B uses the simulator in order to produce a
zero-knowledge proof πi1,1 ←− Sim(ci1−1, ci1 , pk). Finally, (ci1 , πi1,1)
is returned to D.

– If i = i2, B executes the protocol as usual.

Phase 2: On receiving c4, B parses it as (c4,j)1≤j≤78 and each c4,j as (xj , yj).

For player Pi1 , B sets δ = δ4 ◦ . . . ◦ δ1, sets θi1,j
$← G∗ for all j ∈ J1, 78K \

(∪i=i1,icJ18·(i−1)+1, 18·iK), and θi1,j = yj ·
(
idδ(j) · x

(dki2+dki3+dkic )
j

)−1

for all j ∈ J18 ·(ic−1)+1, 18 ·icK. Then algorithm B uses the simulator to
produce the proof πi1,2 ←− Sim({xj , θ(i1,j)}j∈J1,78K\J18·(i1−1)+1,18·i1K, eki1).

For i = i2, i3, B computes θ(i,j) = xdki
j for j ∈ J1, 78K\J18·(i−1)+1, 18·iK

and their proofs πi,2 ← ZK
{
dki :

∧
j∈J1,78K\J18·(i−1)+1,18·iK θ(i,j) = xdki

j ∧ pki = gski
}
.

The values (θ(i,j))j∈J1,78K\J18·(i−1)+1,18·iK and πi,2 are broadcasted for all
i = i1, i2, i3. D returns (θ(ic,j))j∈J1,78K\J18·(ic−1)+1,18·icK and πic,2.

B verifies the proof πic,2, executes ExtA(πic,2) −→ dkic , and computes

θ′(ic,j) = x
dkic
j for all j ∈ J1, 78K \ J18 · (ic − 1) + 1, 18 · icK. It checks if

θ′(i,j) = θ(i,j), if false B returns a random bit.

Then, for all j ∈ J1, 4K, for all j ∈ J18 · (j − 1) + 1, 18 · jK, B computes

c∗j ←

(
xj ,

yj∏
1≤γ≤4;γ ̸=l

θ(γ,j)

)
. B send PK ← (c∗j )1≤j≤78 to D as the result

of this algorithm. If the result obtain by D and B for PK is different or
equal to ⊥, B returns a random bit.
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Once the DeckGen Algorithm has been executed, we proceed to MakeDog if

needed. B starts as Pi1 , it produces θi1,j = yj ·
(
idδ(j) · x

(dki2+dki3+dkic )
j

)−1

for all j ∈ J73, 78K. For players Pi for i = i2, i3, it produces θ(i,j) = xdki
j for

j ∈ J73, 78K. Like in the previous step, it outputs alongside those values the
zero-knowledge proof πi,2 ←− Sim({xj , θ(i1,j)}j∈J1,78K\J18·(i1−1)+1,18·i1K, eki1)
for i ∈ {i1, i2, i3}. Then verifies the zero-knowledge proof produced by the
adversary, extract them and replay them and returns a random bit if it is not
valid. If one of the players have been designated to take, it picks randomly
a valid dog from cards in Hi ∪ H5, randomize the set of cipher associated
from these cards as before and then simulate both proofs π5 and Πn or Πn,2

depending on the case.

Game phase: B sets p equal to the first player index p∗ = 1, γ = 0 and
played =⊥. For j ∈ J1, 78K:
If p ̸= ic: B runs id← Stratp(played, Hp, p∗, p), then it processes as in the

algorithm (Π, st′)← Play(p, id, skp, pkp, st,PK, D) except that:

– It chooses t at random instead than setting t to the coherent value.
– It computes proofs Π0 and Π1 as in the above defined simulator

SimTrickT
W,S,A(vw)(K, setup, s, {pki}1≤i≤4 ,PK, vw).

It sets Π = (t,Π0, Π1) and sends (Π, st′) to D4. Then it updates st := st′

and the index p that points the next player according to the rule of the
French Tarot. It then parses played as (pl1, . . . , pln) (where n = |played|)
and updates played := (pl1, . . . , pln, id).

If p = ic: B processes as in ExpTrickTW,S,K,D(K).

Final phase The simulated experiment returns 1.

Finally, B runs b∗ ← D5(vw), where vw denotes all the values send and received
by D during its interaction with the simulated experiment, then B returns b∗.

Note that an adversary solving the 72-IND-CPA problem can solve the 78-
IND-CPA problem.

Analysis: We distinguish two cases:

– The adversary forges a proof of a false statement during the DeckGen proto-
col. In this case, if D does not produce a valid proof for the false statement,
then PK = ⊥ so the experiment aborts, hence the advantage of B is lower
than 2 · ϵsound(K).

– The adversary does not forge a proof of a false statement during the DeckGen
protocol. In this case, if PK =⊥ then D5 has no information hence cannot
do better than answering randomly. Now, assuming that PK ̸=⊥ and b = 1,
for all v ∈ J1, 78K, there exist i ∈ J1, 4K and j ∈ J18 · (i − 1) + 1, 18 · iK such
that idv = Decdki(c

∗
4,j).

In the following, we show that in this case, the advantage of B is lower than
2 · ϵ78−IND−CPA(K). If b = 1, then the experiment is perfectly simulated, else,
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the simulator is perfectly simulated. We observe that:

Pr[B wins] =
1

2
(Pr[1← D5(vw)|b = 1] + Pr[0← D5(vw)|b = 0])

=
1

2
(Pr[1← D5(vw)|b = 1] + 1− Pr[1← D5(vw)|b = 0]) .

Finally: ∣∣∣∣Pr[B wins]− 1

2

∣∣∣∣ = 1

2
· |Preal(D, k)− Psim(D, k)| =

λ(K)

2
.

The two cases imply that the advantage of B is lower than 2(ϵ39−IND-CPA(K) +
ϵsound(K)), which concludes the proof. ⊓⊔

Lemma 11. Instantiated by proofs of knowledge that are sound, extractable and
zero-knowledge, our Tarot protocol is Dog-private under the DDH assumption.

Proof. As previously the main intuition is based on the fact thatA has to outputs
valid proof for each of its actions.
Game 0: Let Game 0 be the is dog experiment ExpdogW,A(K, iguess).
Game 1: A has to output a valid zero knowledge proof for Pic ’s key. Under
soundness of the NIZKP used for Πpkic

, we have that the extracted key skic
verifies gskic = pkic . C check this equality and aborts the game if this does not

hold. Thus, AdvindistG0,G1
(A) ≤ ϵextract(K).

The three following games modify the behaviours of the challenger during the
first phase of KeyGen.
Game 2: In this game we decrypt the elements (cic,j)1≤j≤78 using skic obtained
previously. The challenger aborts if {Decskic (cic,j)}1≤j≤78 ̸= D. Under soudness

of the NIZKP, we obtain AdvindistG1,G2
(A) ≤ ϵextract(K).

Game 3,4: The same is done for Pi1a
, its key have been produced by the chal-

lenger, hence we do not rely on the soudness of any proof before this. Game 4:
is the same for Pi1a

.
The three following games modify the behaviours of the challenger during the
second phase of KeyGen.
Game 5,6,7: Pic secret key skic underlying Pic ’s proof of phase 2 is extracted. C
checks whether for all j ∈ J1, 72K\J18·(ic−1)+1, 18·icK, the equality θ(ic,j) = x

skic
j

holds, if not, C abort the game. We obtain AdvindistG4,G5
(A) ≤ ϵextract(K). Game 6

comprise the same modification for Pi1a
. Game 7 is the same modification for

Pi2a
.

We now modify the behaviours of the corrupted players during the MakeDog
protocol.
Game 8,9,10: The first step of the MakeDog protocol requires the players to
output θ(i,j) values alongside a zero-knowledge proof. We proceed to the same
modification as above for the cards in the dog for each of the three corrupted
players.

49



These two additional games are only required if one of the corrupted player
takes.
Game 11: If the taker is corrupted it has to randomise its cards with the dog.
First we extract δ5 and the {rj}73≤j≤78 and replay the randomisation, if it does
not match the outputted values the game is aborted.
Game 12: In addition to the previous modifications, we bypass proof Πn or Πn,2

(depending on the case) and directly executes GetHand and verify that for all
id ∈ d \∪4i=1Hi, id /∈ O. If not we abort the games and return a random bit. ⊓⊔
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