
Short Paper: A Longitudinal Study of

Financial Apps in the Google Play Store

Vincent F. Taylor and Ivan Martinovic

Department of Computer Science,
University of Oxford,

Oxford, United Kingdom.
{vincent.taylor,ivan.martinovic}@cs.ox.ac.uk

Abstract. Apps in the FINANCE category constitute approximately 2%
of the 2,000,000 apps in the Google Play Store. These apps handle
extremely sensitive data, such as online banking credentials, budgets,
salaries, investments and the like. Although apps are automatically vet-
ted for malicious activity before being admitted to the Google Play Store,
it remains unclear whether app developers themselves check their apps
for vulnerabilities before submitting them to be published. Additionally,
it is not known how financial apps compare to other apps in terms of
dangerous permission usage or how they evolve as they are updated. We
analyse 10,400 apps to understand how apps in general and financial apps
in particular have evolved over the past two years in terms of danger-
ous permission usage and the vulnerabilities they contain. Worryingly,
we discover that both financial and non-financial apps are getting more
vulnerable over time. Moreover, we discover that while financial apps
tend to have less vulnerabilities, the rate of increase in vulnerabilities in
financial apps is three times as much as that of other apps.

1 Introduction

Android is the dominant mobile operating system with control of 84.7% of the
smartphone market as of 2015 Q3, dwarfing its nearest rival, iOS, at 13.1% [9].
Smartphone users use over 26 di↵erent apps per month, and spend more than
one hour per day using apps on average [12]. In the United Kingdom, banking
using a mobile device such as a smartphone or tablet has already overtaken the
act of going into a branch or using a PC to bank [4]. Recently, Finance Monthly
reported that usage of finance and banking apps rose 17% among “a✏uent middle
class” customers. Along similar lines, Google reports that 75% of users use only
one or two finance apps, but that 44% of users use these finance apps on a daily
basis.

Fraudsters and other adversaries have long been known to exploit victims
for the greatest financial gain, and with the rising popularity of financial apps,
we expect their attention to turn there. Previous work has analysed apps in the
Google Play Store as a whole [6], but it remains unclear whether a one-size-fits-
all approach to understanding smartphone apps in general properly encapsulates

Google Play Store

Web page request for App x Web page response for App x

Worker 1 Worker 2 Worker n...

Name of App x Full app data for App x

App Data Repository Command & Control server App list from GPSC project

Fig. 1. Highly-scalable cloud-based crawler architecture.

the idiosyncrasies of financial apps in particular. Indeed, financial apps handle
more sensitive information than most typical apps and thus have a requirement
for the secure storage, processing and transmission of this data.

To address this gap in the literature, we performed several tasks. We collected
snapshots of the entire Google Play Store quarterly over a two-year period to
understand how apps in general and financial1 apps in particular have evolved
in terms of dangerous2 permission usage. Additionally, we used our most recent
snapshot of apps to compare and contrast financial apps to the remainder of
apps in the Google Play Store. Finally, we used open-source Android app vul-
nerability scanning tools to understand how financial apps compare to other
apps in terms of the vulnerabilities they contain and how this changes as apps
are updated by their developers.

Contributions. Specifically, our contributions are as follows:

– We analyse how financial apps have evolved over the past two years when
compared to other apps in terms of their dangerous permission usage.

– We perform security analyses on 10,400 apps using static vulnerability anal-
ysis tools to understand how financial apps compare to other apps in terms
of the vulnerabilities they contain and how they change as apps are updated.

Roadmap. Section 2 overviews the evolution of dangerous permission usage;
Section 3 describes how our dataset was collected and the vulnerabilities exam-
ined; Section 4 presents our vulnerability scanning results; Section 5 discusses
our observations and future work; Section 6 surveys the most related work; and
finally Section 7 concludes the paper.

1 We consider financial apps to be those apps listed in the Google Play Store under
the FINANCE category.

2 Dangerous permissions guard access to sensitive user data and must be requested
by apps and approved by users before the relevant data can be accessed [3].

Table 1. Mean dangerous permission usage (and percentage change) across apps over
the two-year period based on number of app downloads.

Downloads ALL apps FINANCE apps

OCT-2014 SEP-2016 Change OCT-2014 SEP-2016 Change

1-1K 3.13 3.16 +0.96% 2.75 2.85 +3.64%

1K-1M 2.37 2.45 +3.38% 3.20 3.43 +7.19%

1M-5B 3.40 3.58 +5.29% 5.62 6.44 +14.59%

2 Google Play Store Analysis

Our first task was to understand how financial apps have evolved in terms of
dangerous permission usage. To capture app metadata, we developed a highly-
scalable cloud-based crawler as shown in Fig. 1. This crawler is run quarterly
and is capable of harvesting full app metadata in less than 48 hours. Our crawler
is informed of all the apps in the Google Play Store by the Google Play Store
Crawler Project (GPSC) [11]. Using our crawler, we obtained approximately two
years of app metadata3, from OCT-2014 to SEP-2016, on all available apps.

C
2

0
0

U
1

IC
A

T
I2

1
B

U
S

I1
E

S
S

T
5

A
V

E
LB

A
1

D
BL

2
C

A
L

T
5

A
1

S
3
2

5
T
A

T
I2

1
S

2
C

IA
L

S
H

2
3
3
I1

G
LI

F
E

S
T
Y
LE

S
3
2

5
T
S

F
I1

A
1

C
E

3
H

2
T
2

G
5

A
3
H

Y
0

E
D

IA
BA

1
D

BV
ID

E
2

0
E

D
IC

A
L

H
E

A
LT

H
BA

1
D

BF
IT

1
E

S
S

3
5

2
D

U
C

T
IV

IT
Y

G
A

0
E

B5
2

LE
B3

LA
Y
I1

G
G

A
0

E
BC

A
S

I1
2

0
U

S
IC

BA
1

D
BA

U
D

I2
1

E
W

S
BA

1
D

B0
A

G
A

Z
I1

E
S

E
1

T
E

5
T
A

I1
0

E
1

T
E

D
U

C
A

T
I2

1
W

E
A

T
H

E
5

T
2

2
LS

G
A

0
E

BA
D

V
E

1
T
U

5
E

G
A

0
E

BS
T
5

A
T
E

G
Y

G
A

0
E

BS
I0

U
LA

T
I2

1
LI

B
5

A
5

IE
S

BA
1

D
BD

E
0

2
G

A
0

E
B0

U
S

IC
B

2
2

K
S

BA
1

D
B5

E
F
E

5
E

1
C

E
G

A
0

E
B5

A
C

I1
G

G
A

0
E

BS
3
2

5
T
S

G
A

0
E

BA
C

T
I2

1
C

2
0

IC
S

G
A

0
E

BC
A

S
U

A
L

G
A

0
E

BW
2

5
D

G
A

0
E

BT
5

IV
IA

G
A

0
E

BC
A

5
D

G
A

0
E

BE
D

U
C

A
T
I2

1
A

L
G

A
0

E
BA

5
C

A
D

E
G

A
0

E
BB

2
A

5
D

3
E

5
S

2
1

A
LI

Z
A

T
I2

1
G

A
0

E
B3

U
Z

Z
LE

CDWHgRUy RI ASS

0
1
2
3
4
5

0
H
D
n

Fig. 2. Mean number of dangerous permissions used per category of app.

Fig. 2 shows how the number of dangerous permissions per category of app
varied. Apps in the FINANCE category use among the highest number of dan-
gerous permissions at 3.3. Moreover, as shown in Table 1, financial apps had a
greater percentage increase in the number of dangerous permissions used over
the last two years when compared to all apps. From Fig. 3, we can see that
financial apps use permissions typical to that of other apps, except permissions
used to access a user’s location, camera, and contacts, as notable examples.

3 Our app metadata is available to the research community upon request.

5
(

A
D

B(
X

T
(

5
1

A
LB

6
T
2

5
A

G
(

W
5

IT
(

B(
X

T
(

5
1

A
LB

6
T
2

5
A

G
(

5
(

A
D

B3
H

2
1

(
B6

T
A

T
(

A
C

C
(

6
6

B)
I1

(
BL

2
C

A
T
I2

1

A
C

C
(

6
6

BC
2

A
5

6
(

BL
2

C
A

T
I2

1

G
(

T
BA

C
C

2
U

1
T
6

C
A

0
(

5
A

5
(

C
2

5
D

BA
U

D
I2

C
A

LL
B3

H
2

1
(

5
(

A
D

BC
2

1
T
A

C
T
6

6
(

1
D

B6
0

6

W
5

IT
(

BC
2

1
T
A

C
T
6

5
(

C
(

IV
(

B6
0

6

5
(

A
D

BC
A

LL
BL

2
G

5
(

A
D

BC
A

L(
1

D
A

5

W
5

IT
(

BC
A

LL
BL

2
G

5
(

A
D

B6
0

6

3
5

2
C

(
6

6
B2

U
T
G

2
I1

G
BC

A
LL

6

W
5

IT
(

BC
A

L(
1

D
A

5

5
(

C
(

IV
(

B0
0

6

U
6

(
B6

I3

%
2

D
Y
B6

(
1

6
2

5
6

5
(

C
(

IV
(

BW
A

3
B3

U
6

H

A
D

D
BV

2
IC

(
0

A
IL

DDngHURXV 3HUPLVVLRnV

0
10
20
30
40
50
60

3
H
UF

H
n

WD
g

H
 (

%
)

)I1A1C(DSSV

ALL DSSV

Fig. 3. Permission usage in FINANCE apps compared to ALL apps.

3 Dataset and Tools

The next step was to understand how the vulnerabilities contained within fi-
nancial apps changed as apps were updated. To construct our app dataset, we
randomly chose and downloaded 200 apps in the FINANCE category and 5,000
apps from all OTHER categories. Additionally, we leveraged the PlayDrone [14]
dataset to get the corresponding .apk files for these apps from two years ago for
a total of 10,400 apps. Our dataset is summarised in Table 2.

Table 2. Dataset of apps used in the analysis.

Category Dataset Name # of APKs Source Date

FINANCE
FIN-OLD 200 PlayDrone Oct-2014

FIN-NEW 200 Google Play Sep-2016

OTHER
OTH-OLD 5,000 PlayDrone Oct-2014

OTH-NEW 5,000 Google Play Sep-2016

3.1 Vulnerabilities Analysed

The vulnerabilities that were analysed are listed in Table 3. Vulnerabilities were
synthesised from the OWASP Top 10 [13] which lists common vulnerabilities
a↵ecting mobile apps. We used two popular app security analysis frameworks to
analyse apps for vulnerabilities: AndroBugs [1] and MobSF [2]. These frameworks
leverage static code analysis and are lightweight and scalable, making them
suitable for our purpose.

Static analysis tools su↵er from their reduced ability to handle dynamic pro-
gramming features such as reflection and dynamic code loading. Thus our vul-
nerability scanning may fail to detect issues that only emerge at runtime. For
this reason, the number of vulnerabilities reported should be considered a lower
bound on the actual number of vulnerabilities present within apps.

Table 3. List of vulnerabilities considered.

Identifier Description Tool Used

INF-DISC-WRLRD App uses world readable/writeable files

AndroBugsINF-DISC-PRVDR ContentProvider exported but not secured

INF-DISC-KSNPW Keystores not protected by a password

SSL-TLSX-PLAIN Sending data over plain HTTP

AndroBugsSSL-TLSX-INVLD Invalid SSL certificate verification

SSL-TLSX-WVIEW Improper WebView certificate validation

BRK-CRYP-ECBMD Use of the ECB cryptographic function
MobSF

BRK-CRYP-RANDG Use of insecure random number generators

OTH-MISC-INTNT Starting services with implicit Intents
AndroBugs

OTH-MISC-DEBUG App is debuggable

BIN-ROOT-DTECT App does not have root detection MobSF

4 Results

The results of our vulnerability analysis is shown in Table 4. Worryingly, both
classes of apps became more vulnerable as they were updated for a majority
of the vulnerabilities considered. For financial apps however, the prevalence of
vulnerabilities overall was lower when compared to other apps. While this is wel-
come, we note that the average percentage increase in vulnerabilities in financial
apps was approximately three times that of other apps.

Non-financial apps had four types of vulnerabilities that actually improved
as apps were updated: SSL-TLSX-VERIF, SSL-TLSX-WVIEW, OTH-MISC-DEBUG and
BIN-ROOT-DTECT. The only vulnerability that improved for financial apps was
BIN-ROOT-DTECT. The Top 4 vulnerabilities that had the highest increase in
prevalence were shared between financial and non-financial apps. These vulnera-
bilities involved apps creating world readable/writeable files (INF-DISC-WRLRD),
using unsecured ContentProviders (INF-DISC-PRVDR), generating random num-
bers insecurely (BRK-CRYP-RANDG) and using implicit intents to start services
(OTH-MISC-INTNT). Unsecured ContentProviders and world-readable files in-
troduce the possibility of malicious apps on a device reading data stored by
a vulnerable app. Considering that financial apps handle sensitive data, care
should be taken by app developers to ensure that such data is stored securely
on the device.

Table 4. Percentage of apps within each dataset containing one or more of each studied
vulnerability.

Vulnerability OTH-OLD (%) OTH-NEW (%) FIN-OLD (%) FIN-NEW (%)

INF-DISC-WRLRD 16.5 24.7 10.5 20.5

INF-DISC-PRVDR 2.22 2.92 2.00 3.00

INF-DISC-KSNPW 2.32 2.34 2.00 2.00

SSL-TLSX-PLAIN 80.1 80.7 75.5 77.0

SSL-TLSX-VERIF 15.4 14.6 15.5 16.0

SSL-TLSX-WVIEW 9.74 9.21 9.50 10.0

BRK-CRYP-ECBMD 12.7 12.7 10.5 11.1

BRK-CRYP-RANDG 59.3 63.8 54.5 61.1

OTH-MISC-INTNT 3.22 5.19 2.50 7.50

OTH-MISC-DEBUG 2.30 2.06 2.00 2.00

BIN-ROOT-DTECT* 95.2 93.4 96.5 92.9

*Root detection may be implemented in many ways, thus false positives may be
present in our result, and consequently we consider these numbers an upper bound.

5 Discussion

It is welcome to observe that financial apps on average have a lower prevalence
of vulnerabilities. However, it is worrying that these numbers are increasing,
and indeed increasing faster than that of other apps. Given that financial apps
potentially handle very sensitive information, great care needs to be taken by
app developers to safeguard the data that their apps use.

As a first step, app developers should familiarise themselves with the OWASP
Top 10 [13] to understand the typical security problems that a↵ect mobile apps.
By gaining a better understanding of typical security problems, app develop-
ers can avoid common mistakes that make their apps easily exploitable by
adversaries. App developers can also leverage any of the myriad open-source
static/dynamic vulnerability analysis tools to check their apps for vulnerabili-
ties before publishing them to app stores. In some cases, app developers may not
be the primary source of the vulnerabilities contained within their apps. Many
app developers unwittingly use vulnerable libraries and introduce vulnerabilities
into otherwise secure apps. App developers must take care to ensure that they
always use up-to-date versions of libraries whenever they update their apps.

The o�cial Android app store, Google Play, can be a catalyst for improving
the quality of apps by performing vulnerability analysis checks on apps at the
time when they are submitted to be published. During this research, we observed
that scanning apps for vulnerabilities takes less than one minute on average.
Publishing an app to the Google Play Store already takes up to several hours,
so we expect that lightweight vulnerability scanning will not cause a noticeable
delay. Apps containing vulnerabilities can be returned to app developers for

fixing, penalised in search results, or flagged as being vulnerable when presented
to users.

Static analysis alone does not paint the full picture of what is happening
inside apps. For future work, we plan to use dynamic analysis tools to further
understand the vulnerabilities contained within apps, as well as explore a wider
range of app vulnerabilities.

6 Related Work

Viennot et al. [14] developed a tool called PlayDrone and used it to perform
the first indexing of apps in the Google Play Store. We leverage their dataset to
obtain old versions of apps to perform our longitudinal analysis of vulnerability
evolution. Along similar lines, Book et al. [5] perform a longitudinal analysis
of permission usage in ad libraries. The authors discover that not only have ad
libraries gained greater sensitive access to devices over time, but they typically
get access that risks user privacy and security. We complement this analysis by
evaluating how permissions have increased in apps overall and within financial
apps specifically.

A number of authors identified di↵erent classes of vulnerabilities in Android
apps and proposed various tools to detect them. We list a few for brevity. Fahl
et al. [8] investigated SSL/TLS related vulnerabilities using a tool called Mallo-
droid. The authors found that approximately 8% of the apps that were examined
were potentially vulnerable to man-in-the-middle attacks. Equally important, Lu
et al. [10] investigated Android apps being vulnerable to component hijacking
attacks. Subsequently, Egele et al. [7] investigated whether apps were using cryp-
tographic APIs securely. They found that 88% of the apps investigated made
at least one mistake when using cryptographic APIs. Complementary to these
pieces of work, we use static analysis tools to evaluate the extent to which An-
droid apps currently su↵er from these and other vulnerabilities. Additionally,
we examine how the prevalence of vulnerabilities has changed as apps have been
updated, as well as how financial apps compare to regular apps as it relates to
vulnerability evolution.

7 Conclusion

In this paper, we investigated dangerous permission usage in Android apps in
general and in finance apps in particular. We discovered that while both classes of
apps had increases in the number of dangerous permissions used, financial apps
typically used more dangerous permissions and also had greater percentage in-
creases in permission usage. Additionally, financial apps tended to use location,
camera and contacts permissions more than other apps. By doing vulnerability
analysis of apps, we observed that apps tend to become more vulnerable as they
are updated. While financial apps were less likely to contain vulnerabilities over-
all, as they were updated their prevalence in containing vulnerabilities increased
three times as much as other apps. As users become more comfortable with using

smartphone apps for sensitive tasks, it becomes imperative that app developers
take appropriate measures to ensure that sensitive data remains safe, whether it
is stored on a device or transmitted over a network.

Acknowledgement. Vincent F. Taylor is supported by a Rhodes Scholarship
and the UK EPSRC.

References

1. AndroBugs Framework. https://github.com/AndroBugs/AndroBugs Framework.
2. Mobile Security Framework. https://github.com/ajinabraham/Mobile-Security-

Framework-MobSF.
3. Requesting Permissions. https://developer.android.com/guide/topics/permissions/

requesting.html.
4. BBA. Mobile phone apps become the UKs number one way to

bank. https://www.bba.org.uk/news/press-releases/mobile-phone-apps-become-
the-uks-number-one-way-to-bank/, June 2015.

5. T. Book, A. Pridgen, and D. S. Wallach. Longitudinal analysis of Android ad
library permissions. arXiv preprint arXiv:1303.0857, 2013.

6. B. Carbunar and R. Potharaju. A Longitudinal Study of the Google App Market.
In Proceedings of the 2015 IEEE/ACM International Conference on Advances in

Social Networks Analysis and Mining 2015, ASONAM ’15, pages 242–249, New
York, NY, USA, 2015. ACM.

7. M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel. An Empirical Study of
Cryptographic Misuse in Android Applications. In Proceedings of the 2013 ACM

SIGSAC Conference on Computer and Communications Security, CCS ’13, pages
73–84, New York, NY, USA, 2013. ACM.

8. S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and M. Smith.
Why Eve and Mallory Love Android: An Analysis of Android SSL (in)Security.
In Proceedings of the 2012 ACM Conference on Computer and Communications

Security, CCS ’12, pages 50–61, New York, NY, USA, 2012. ACM.
9. Gartner. Gartner Says Emerging Markets Drove Worldwide Smart-

phone Sales to 15.5 Percent Growth in Third Quarter of 2015.
http://www.gartner.com/newsroom/id/3169417, November 2015.

10. L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang. CHEX: Statically Vetting Android
Apps for Component Hijacking Vulnerabilities. In Proceedings of the 2012 ACM

Conference on Computer and Communications Security, CCS ’12, pages 229–240,
New York, NY, USA, 2012. ACM.

11. Marcello Lins. Google Play Apps Crawler. https://github.com/MarcelloLins/
GooglePlayAppsCrawler.

12. Nielson. Smartphones: So Many Apps, So Much Time.
http://www.nielsen.com/us/en/insights/news/2014/smartphones-so-many-apps–
so-much-time.html, July 2014.

13. OWASP. Projects/OWASP Mobile Security Project - Top Ten Mobile Risks.
https://www.owasp.org/index.php/Projects/OWASP Mobile Security Project -
Top Ten Mobile Risks.

14. N. Viennot, E. Garcia, and J. Nieh. A Measurement Study of Google Play. In The

2014 ACM International Conference on Measurement and Modeling of Computer

Systems, SIGMETRICS ’14, pages 221–233, New York, NY, USA, 2014. ACM.

	Short Paper: A Longitudinal Study ofFinancial Apps in the Google Play Store

