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Abstract. Multivariate Cryptography is one of the main candidates for
creating post-quantum cryptosystems. Especially in the area of digital
signatures, there exist many practical and secure multivariate schemes.
However, there is a lack of multivariate signature schemes with special
properties such as blind, ring and group signatures. In this paper, we
propose a technique to transform the Rainbow multivariate signature
schemes into a blind signature scheme. The resulting scheme satisfies the
usual blindness criterion and a one-more-unforgeability criterion adapted
to MQ signatures, produces short blind signatures and is very e�cient.
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1 Introduction

Cryptographic techniques are an essential tool to guarantee the security of com-
munication in modern society. Today, the security of nearly all of the crypto-
graphic schemes used in practice is based on number theoretic problems such as
factoring large integers and solving discrete logarithms. The best known schemes
in this area are RSA [25], DSA [14] and ECC. However, schemes like these will
become insecure as soon as large enough quantum computers are built. The rea-
son for this is Shor’s algorithm [29], which solves number theoretic problems like
integer factorization and discrete logarithms in polynomial time on a quantum
computer. Therefore, one needs alternatives to those classical public key schemes
which are based on hard mathematical problems not a↵ected by quantum com-
puter attacks (so called post-quantum cryptosystems).
The increasing importance of research in this area has recently been empha-
sized by a number of authorities. For example, the american National Security
Agency has recommended governmental organizations to change their security
infrastructures from schemes like RSA to post-quantum schemes [17] and the
National Institute of Standards and Technologies (NIST) is preparing to stan-
dardize these schemes [18]. According to NIST, multivariate cryptography is one
of the main candidates for this standardization process. Multivariate schemes



are in general very fast and require only modest computational resources, which
makes them attractive for the use on low cost devices like smart cards and RFID
chips [5,6]. However, while there exist many practical multivariate standard sig-
nature schemes such as UOV [15], Rainbow [9] and Gui [24], there is a lack of
multivariate signature schemes with special properties such as blind, ring, and
group signatures.
Blind signature schemes allow a user, who is not in charge of the private signing
key, to obtain a signature for a message d by interacting with the signer. The
important point is that this signer, who holds the secret key, receives no informa-
tion about the message d that is signed nor about the signature s that is created
through the interaction. Nevertheless, anyone with access to the public verifi-
cation key is capable of verifying that signature. Because of these unlinkability
and public verifiability properties, blind signature schemes are an indispensable
primitive in a host of privacy-preserving applications ranging from electronic
cash to anonymous database access, e-voting, and anonymous reputation sys-
tems.
In this paper, we present a technique to transform Rainbow, a multivariate
quadratic (MQ) signature scheme, into a blind signature scheme. This trans-
formation is accomplished by joining the MQ signature scheme with the zero-
knowledge MQ-based identification scheme of Sakumoto et al. [28]. The user
queries the signer on a blinded version of the message to be signed; the signer’s
response is then combined with the blinding information in order to produce
a non-interactive zero-knowledge proof of knowledge of a pre-image under the
public verification key, which is a set of quadratic polynomials that contains the
signer’s public key in addition to a large random term. The only way the user
can produce such a proof is by querying the signer at some point for a partial
pre-image; however, because it is zero-knowledge, this proof contains no infor-
mation on the message that was seen and signed by the signer, thus preventing
linkage and ensuring the user’s privacy.
We obtain one of the first multivariate signature schemes with special proper-
ties and more generally one of the very few candidates for establishing prac-
tical and secure post-quantum blind signatures. In terms of security require-
ments, our scheme satisfies the usual blindness notion, but an adapted one-
more-unforgeability one which we call universal -one-more-unforgeability. This
change is justified by the observation that the usual one-more-unforgeability no-
tion generalizes existential unforgeability for regular signatures; however, MQ
signatures can only be shown to o↵er universal unforgeability and hence require
a universal one-more-unforgeability generalization. While our technique applies
to some other MQ signature schemes also, we instantiate our scheme with the
Rainbow signature scheme and propose parameters targeting various levels of
security.
The rest of this paper is organized as follows. Section 2 recalls the basic con-
cepts of blind signatures and discusses the basic security notions. In Section 3
we recall the basic concepts of multivariate cryptography and review the Rain-
bow signature scheme, Sakumoto’s multivariate identification scheme [28], and
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its transformation into a digital signature scheme due to Hülsing [12]. Section 4
presents our technique to extend multivariate signature schemes such as Rain-
bow to blind signature schemes, while Section 5 discusses the security of our
construction. In Section 6 we give concrete parameter sets and analyze the e�-
ciency of our scheme. Furthermore, in this section, we describe a proof of concept
implementation of our scheme and compare it with other existing (classical and
post-quantum) blind signature schemes. Finally, Section 7 concludes the paper.

2 Blind Signatures

Blind signature schemes as proposed by David Chaum in [3] allow a user, who is
not in charge of the private signing key, to obtain a signature for a message d on
behalf of the owner of the private key (called the signer). The key point hereby
is that the signer gets no information about the content of the message d.
The signature generation process of a blind signature scheme is an interactive
process between the user and the signer. In the first step, the user computes
from the message d a blinded message d? and sends it to the signer. The signer
uses his private key to generate a signature �? for the message d? and sends it
back to the signer. Due to certain homomorphic properties in the inner structure
of the blind signature scheme, the user is able to compute from �? a valid sig-
nature � for the original message d. The receiver of a signed message can check
the authenticity of the signature � in the same way as in the case of a standard
signature scheme. Figure 1 shows a graphical illustration of the signature gener-
ation process of a blind signature scheme.
Formally, a blind signature scheme BS is a three-tuple, consisting of two poly-

user: d , pk signer: sk

compute blinded
message d? -d?

compute signature
�? for d?� �?

compute signature
� for d

Fig. 1. Signature Generation Process of a Blind Signature Scheme

nomial time algorithms KeyGen and Verify and an interactive signing protocol
Sign [13].

– KeyGen(1): The probabilistic algorithm KeyGen takes as input a security
parameter  and outputs a key pair (sk, pk) of the blind signature scheme.
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– Sign: The signature generation step is an interactive protocol between the
User, who gets as input a message d and a public key pk and the Signer

who is given the pair (pk, sk) generated by algorithm KeyGen. At the end
of the protocol, the Signer outputs either “completed” or “non-completed”,
while the user outputs either “failed” or a signature �.

– Verify((d,�), pk): The deterministic algorithm Verify takes as input a mes-
sage/signature pair (d,�) and the public key pk. It outputs TRUE, if � is
a valid signature for the message d and FALSE otherwise.

In the following, we assume the correctness of the blind signature scheme BS: If
both the User and the Signer follow the protocol, the Signer outputs always
“completed”, independently of the message d and the output (sk, pk) of the
algorithm KeyGen. Similarly, the User always outputs a signature � and we have

Pr[Verify((d,�), pk) = TRUE] = 1.

The basic security criteria of a blind signature scheme are Blindness and One-
More-Unforgeability.

– Blindness: By signing the blinded message d?, the signer of a message gets
no information about the content of the message to be signed nor about the
final blind signature �. More formally, blindness can be defined using the
following security game.

Game[Blindness]:

1. The adversary A uses the algorithm KeyGen to generate a key pair
(sk, pk) of the blind signature scheme. The public key pk is made public,
while A keeps sk as his private key.

2. The adversary A outputs two messages d0 and d1, which might depend
on sk and pk.

3. Let u0 and u1 be users with access to the public key pk but not to the se-
cret key sk. For a random bit b that is unknown to A, user u0 is given the
message db, while the message d1�b is sent to user u1. Both users engage
in the interactive signing protocol (with A as signer), obtaining blind
signatures �0 and �1 for the messages d0 and d1. The message/signature
pairs (d0,�0) and (d1,�1) are given to the adversary A.

4. A outputs a bit b̄. He wins the game, if and only if b̄ = b holds.

The blind signature scheme BS is said to fulfill the blindness property, if the
advantage

AdvblindnessBS (A) = |2 · Pr[b0 = b]� 1|
for every PPT adversary A is negligible in the security parameter.
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– One-More-Unforgeability: Even after having successfully completed L
rounds of the interactive signing protocol, an adversary A not in charge of
the private key sk cannot forge another valid blind signatures for a given
message. More formally, we can define One-More-Unforgeability using the
following game.

Game [Universal-One-More-Unforgeability]
1. The algorithm KeyGen is used to generate a key pair (sk, pk). The pub-

lic key pk is given to the adversary A, while sk is kept secret by the
challenger.

2. The adversary A engages himself in polynomially many interactive sign-
ing protocols with di↵erent instances of Signer. Let L be the number of
cases in which the Signer outputs completed.

3. A outputs a list L of L message / signature pairs. The challenger checks
if all the message / signature pairs are valid and pairwise distinct.

4. The challenger outputs a message d? not contained in the list L. The
adversary wins the game, if he is able to generate a valid blind signature
� for the message d?, i.e. if Verify((d?,�), pk) = TRUE holds.

The blind signature scheme BS is said to provide the One-More-Unforgeability
property, if the success probability

Pr[A wins]

is, for any PPT adversary A, negligible in the security parameter.
We note that this formalism is di↵erent from the standard security game for
blindness, where the adversary is allowed to choose his own message but is
required to forge at least L + 1 valid and distinct signatures. We choose to
restrict the adversary’s choice to accurately reflect the similar lack of choice
in the standard security model for MQ signatures: universal unforgeability as
opposed to existential unforgeability.
In the existential unforgeability game, the adversary wins whenever he is capable
of producing any forgery, regardless of which message is signed. In contrast,
in the universal unforgeability game the adversary obtains a message from the
challenger and the adversary only wins if he can forge a signature for that specific
message. Nevertheless, the universal adversary is allowed to query signatures
after obtaining the target message; just not signatures on the same message.
The reason why our formalism of universal-one-more-unforgeability does not
allow blind-signature queries after delivering the target message to the adversary
is precisely because the signature-queries are blind: the challenger should not be
able to tell if it is the target message that is being blind-signed or something
else.

3 Multivariate Cryptography

The basic objects of multivariate cryptography are systems of multivariate quad-
ratic polynomials. Their security is based on the MQ Problem: Given m multi-
variate quadratic polynomials p(1)(x), . . . , p(m)(x) in n variables x1, . . . , xn, find
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a vector x̄ = (x̄1, . . . , x̄n) such that p(1)(x̄) = . . . = p(m)(x̄) = 0.

The MQ problem is proven to be NP-hard even for quadratic polynomials over
the field GF(2) [11]. Moreover, it is widely assumed as well as experimentally
validated that solving random instances of the MQ problem (with m ⇡ n) is a
hard task, see for example [31].
To build a public key cryptosystem on the basis of the MQ problem, one starts
with an easily invertible quadratic map F : Fn ! Fm (central map). To hide
the structure of F in the public key, one composes it with two invertible a�ne
(or linear) maps S : Fm ! Fm and T : Fn ! Fn. The public key of the scheme
is therefore given by P = S �F � T : Fn ! Fm. The private key consists of S, F
and T and therefore allows to invert the public key.

Note: Due to the above construction, the security of multivariate schemes is
not only based on the MQ-Problem, but also on the EIP-Problem (“Extended
Isomorphism of Polynomials”) of finding the decomposition of P.
In this paper we concentrate on multivariate signature schemes. The standard
signature generation and verification process of a multivariate signature scheme
works as shown in Figure 2.

Signature Generation

w 2 Fm -S�1

x 2 Fm -F�1

y 2 Fn -T �1

z 2 Fn

6

P

Signature Verification

Fig. 2. Standard workflow of multivariate signature schemes

Signature generation: To sign a message w 2 Fm, one computes recursively
x = S�1(w) 2 Fm, y = F�1(x) 2 Fn and z = T �1(y). The signature of the
message w is z 2 Fn. Here, F�1(x) means finding one (of possibly many) pre-
image of x under the central map F .

Verification: To check the authenticity of a signature z 2 Fn, one simply com-
putes w0 = P(z) 2 Fm. If w0 = w holds, the signature is accepted, otherwise
rejected.
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3.1 The Rainbow Signature Scheme

The Rainbow signature scheme [9] is one of the most promising and best studied
multivariate signature schemes. The scheme can be described as follows:

Let F = Fq be a finite field with q elements, n 2 N and v1 < v2 < . . . < v` <
v`+1 = n be a sequence of integers. We set m = n� v1, Oi = {vi + 1, . . . , vi+1}
and Vi = {1, . . . , vi} (i = 1, . . . , `).

Key Generation: The private key of the scheme consists of two invertible a�ne
maps S : Fm ! Fm and T : Fn ! Fn and a quadratic map F(x) = (f (v1+1)(x),
. . . , f (n)(x)) : Fn ! Fm. The polynomials f (i) (i = v1+1, . . . , n} are of the form

f (i) =
X

k,l2Vj

↵
(i)
k,l · xk · xl +

X

k2Vj ,l2Oj

�
(i)
k,l · xk · xl +

X

k2Vj[Oj

�
(i)
k · xk + ⌘(i) (1)

with coe�cients randomly chosen from F. Here, j is the only integer such that
i 2 Oj . The public key is the composed map P = S � F � T : Fn ! Fm.

Signature Generation: To generate a signature for a document w 2 Fm , we
compute recursively x = S�1(w) 2 Fm, y = F�1(x) 2 Fn and z = T �1(y).
Here, F�1(x) means finding one (of approximately qv1) pre-image of x under
the central map F . This is done as shown in Algorithm 1.

Algorithm 1 Inversion of the Rainbow central map
Input: Rainbow central map F , vector x 2 Fm.
Output: vector y 2 Fn such that F(y) = x.
1: Choose random values for the variables y1, . . . , yv1 and substitute these values into

the polynomials f (i) (i = v1 + 1, . . . , n).
2: for k = 1 to ` do
3: Perform Gaussian Elimination on the polynomials f (i) (i 2 Ok) to get the values

of the variables yi (i 2 Ok).
4: Substitute the values of yi (i 2 Ok) into the polynomials f (i), i 2

{vk+1 + 1, . . . , n}.
5: end for

It might happen that one of the linear systems in step 3 of the algorithm does
not have a solution. In this case one has to choose other values for y1, . . . , yv1
and start again. The signature of the document w is z 2 Fn.

Signature Verification: To verify the authenticity of a signature z 2 Fn, one
simply computes w0 = P(z) 2 Fm. If w0 = w holds, the signature is accepted,
otherwise rejected.
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3.2 The MQ-based Identification Scheme

In [28] Sakumoto et al. proposed an identification scheme based on multivariate
polynomials. There exist two versions of the scheme: a 3-pass and a 5-pass vari-
ant. In this section we introduce the 5-pass variant.
The scheme uses a system P of m multivariate quadratic polynomials in n vari-
ables as a public parameter. The prover chooses a random vector s 2 Fn as his
secret key and computes the public key v 2 Fm by v = P(s).
To prove his identity to a verifier, the prover performs several rounds of the
interactive protocol shown in Figure 3.
Here,

G(x,y) = P(x+ y)� P(x)� P(y) + P(0) (2)

is the polar form of the system P.
The scheme is a zero-knowledge argument of knowledge for a solution of the
system P(x) = v.
The knowledge error per round is 1

2 + 1
2q . To decrease the impersonation prob-

ability below 2�⌘, one therefore needs to perform r = d �⌘
log2(1/2+1/2q)e rounds

of the protocol. For identification purposes, ⌘ ⇡ 30 may be su�cient, but for
signatures we require ⌘ to be at least as large as the security level.

Prover: P,v, s Verifier: P,v

r0, t0 2R Fn, e0 2R Fm

r1 = s� r0

c0 = Com(r0, t0, e0)

c1 = Com(r1,G(t0, r1) + e0) -(c0, c1)
↵ 2R F� ↵

t1 = ↵r0 � t0

e1 = ↵P(r0)� e0 -(t1, e1)
ch 2R {0, 1}

� ch
If ch = 0, resp = r0

Else, resp = r1 -resp
If ch = 0, check

c0
?
= Com(r0,↵r0 � t1,

↵P(r0)� e1)

If ch = 1, check

c1
?
= Com(r1,↵(v � P(r1))

�G(t1, r1)� e1)

Fig. 3. The 5-pass MQ identification scheme of Sakumoto et al. [28].
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3.3 The MQDSS signature scheme

In [12], Hülsing et al. developed a technique to transform (2n+1) pass identifi-
cation schemes into signature schemes. The technique can be used to transform
the above described 5-pass multivariate identification scheme into an EU-CMA
secure signature scheme.
To generate an MQDSS signature for a message d, the signer produces a tran-
script of the above identification protocol over r rounds. The challenges ↵1, . . . ,↵r

and ch1, . . . , chr are hereby computed from the message d and the commitments
(using a publicly known hash function H). Therefore, the signature has the form

� = (c0,1, c1,1, . . . , c0,r, c1,r, t1,1, e1,1, . . . , t1,r, e1,r, resp1, . . . , respr).

To check the authenticity of a signature �, the verifier parses � into its compo-
nents, uses the commitments to compute the challenges ↵i and chi (i = 1, . . . , r)
and checks the correctness of the responses respi as shown in Figure 3 (for
i = 1, . . . , r).

4 Our Blind Signature Scheme

In this section we present MBSS, construction for blind signatures based on
Rainbow. We chose to restrict our attention to Rainbow due to its short signa-
tures and good performance. Moreover, the key sizes of Rainbow are acceptable
and can be further reduced by the technique of Petzoldt et al. [22].
Nevertheless, our technique applies to any MQ signature scheme relying on the
construction of Fig. 2, i.e., relying on the hiding of a trapdoor to a quadratic
map behind linear or a�ne transforms. As the other MQ signature schemes rely
on the same construction, our technique applies to those cryptosystems as well.
We do not use any property of Rainbow that is not shared by, e.g., HFEv� [24],
pC⇤ [7], or UOV [15]. The exceptions are the MQ signature schemes that do not
have the construction of Fig. 2, such as Quartz [19] and MQDSS [12].

4.1 The Basic Idea

The public key of our scheme consists of two multivariate quadratic systems
P : Fn ! Fm and R : Fm ! Fm. Hereby, P is the Rainbow public key, while R
is a random system. The signer’s private key allows him to invert the system P
using the algorithm from Section 3.1.
In order to obtain a blind signature for a message (hash value) w 2 Fm, the
user chooses randomly a vector z? 2 Fm, computes w̃ = w �R(z?) and sends
w̃ to the signer. The signer uses his private key to compute a signature z for the
message w̃ and sends it to the user. Therefore, the user obtains a solution (z, z?)
of the system P(x1) + R(x2) = w. However, the user can not publish (z, z?)
as his signature for the document w since this would destroy the blindness
of the scheme. Instead, the user has to prove knowledge of a solution to the
system P(x1)+R(x2) = w using a zero knowledge protocol. We use the MQDSS
technique (see Section 3.3) for this proof.
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4.2 Description of the Scheme

In this section we give a detailed description of our blind signature scheme. As
every blind signature scheme, MBSS consists of three algorithms KeyGen, Sign
and Verify, where Sign is an interactive protocol between user and signer.

Parameters: Finite field F, integers m,n and r (depending on a security pa-
rameter ). r hereby determines, how many rounds of the identification scheme
are performed during the generation of a signature.

Key Generation: The signer chooses randomly a Rainbow private key (consisting
of two a�ne maps S : Fm ! Fm and T : Fn ! Fn and a secret central map
F : Fn ! Fm). He computes the public key P as P = S � F � T : Fn ! Fm

(see Section 3.1) and uses a CSPRNG to generate the system R = CSPRNG(P) :
Fm ! Fm. The public key of our blind signature scheme is the pair (P,R), the
signer’s private key consists of S,F and T . However, since R can be computed
from the system P, it is not necessary to publish R (if the CSPRNG in use is
publicly accessible).

Signature Generation: The interactive signature generation process of our blind
signature scheme can be described as follows: To get a signature for the message
d with hash value H(d) = w 2 Fm, the user chooses randomly a vector z? 2 Fm.
He computes w? = R(z?) 2 Fm and sends w̃ = w�w? 2 Fm to the signer. The
signer uses his private key (S,F , T ) to compute a signature z 2 Fn such that
P(z) = w̃ and sends z back to the user, who therefore obtains a solution (z, z?)
of the system P̄(x) = P(x1) +R(x2) = w.
To prove this knowledge to the verifier in a zero knowledge way, the user gen-
erates an MQDSS signature for the message w. As the public parameter of the
scheme he hereby uses the system P̄(x) = P(x1) +R(x2), which is a system of
m quadratic equations in n+m variables. Furthermore, G(x,y) is the polar form
of the system P̄, i.e. G(x,y) = P̄(x + y) � P̄(x) � P̄(y) + P̄(0). In particular,
the user performs the following steps.

1. Use a publicly known hash function H to compute C = H(P||w) and D =
H(C||w).

2. Choose random values for r0,1, . . . , r0,r, t0,1, . . . , t0,r 2 Fm+n, e0,1, . . . , e0,r 2
Fm, set r1,i = (z||z?)� r0,i (i = 1, . . . , r) and compute the commitments

c0,i = Com(r0,i, t0,i, e0,i) and

c1,i = Com(r1,i,G(t0,i, r1,i)� e0,i) (i = 1, . . . , r).

Set COM = (c0,1, c1,1, c0,2, c1,2, . . . , c0,r, c1,r).
3. Derive the challenges ↵1, . . . ,↵r 2 F from (D, COM).
4. Compute t1,i = ↵i · r0,i � t0,i 2 Fm+n and e1,i = ↵i · P̄(r0,i) � e0,i (i =

1, . . . , r). Set Rsp1 = (t1,1, e1,1, . . . , t1,r, e1,r).
5. Derive the challenges (ch1, . . . , chr) from (D, COM,Rsp1).
6. Set Rsp2 = (rch1,1, . . . , rchr,r).
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7. The blind signature � for the message w 2 Fm is given by

� = (C, COM,Rsp1, Rsp2).

The length of the blind signature � is given by

|�| = 1 · |hash value|+ 2r · |Commitment|+ r · (2n+ 3m) F�elements.

Figure 4 shows the full protocol for obtaining a blind signature.
Signature Verification: To check the authenticity of a blind signature � for a
message d with hash value w 2 Fm, the verifier parses � into its components
and computes D = H(C||w). He derives the challenges ↵i 2 F from (D, COM)
and chi from (D, COM,Rsp1) (i = 1, . . . , r).
Finally, he parses COM into (c0,1, c1,1, c0,2, c1,2, . . . , c0,r, c1,r), Rsp1 into t1, e1,
. . . , tr, er and Rsp2 into r1, . . . , rr and checks if, for all i = 1, . . . , r, ri is a correct
response to chi with respect to COM , ti and ei, i.e.

c0,i
?
= Com(ri,↵i · ri � ti,↵i · P(ri)� ei) (for chi = 0)

c1,i
?
= Com(ri,↵i · (w � P(ri))� G(ti, ri)� ei) (for chi = 1). (3)

If all of these tests are fulfilled, the blind signature � is accepted, otherwise re-
jected.

Note: As the resulting blind signature depends on the randomness sampled
for generating the zero-knowledge proof, there may be many signatures asso-
ciated to one tuple (z, z?). To prevent a malicious user from reusing the same
preimage to P(x̄1) + R(x̄2), two signatures to messages d1, d2 are considered
essentially di↵erent whenever w1 = H(d1) 6= w2 = H(d2). In other words, the
zero-knowledge proof is taken into account for validity but not for distinctness.

4.3 Reducing the Signature Length

In this section we present a technique to reduce the length of the blind signature
�, which was already mentioned in [28] and [12].
Instead of including all of the commitments c0,1, c1,1, . . . , c0,r, c1,r into the sig-
nature, we just transmit COM = H(c0,1||c1,1 . . . c0,r||c1,r). However, in this sce-
nario, we have to add (c1�ch1,1, . . . , c1�chr,r) to Rsp2. In the verification process,
the verifier recovers (cch1,1, . . . , cchr,r) by equation (3) and checks if

COM
?
= H(c0,1, c1,1, . . . , c0,r, c1,r)

is fulfilled. By doing so, we can reduce the length of the blind signature � to

|�| = 2 · |hash value|+ r · (2n+ 3m) F elements + r · |Commitment| .
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User: P,R,H, d Signer: S, T ,F ,P,R

1 w = H(d) 2 Fm,

z? 2R Fm,

w? = R(z?) 2 Fm,

w̃ = w �w? 2 Fm - w̃ 2 Fm

2 z 2 Fn z = T �1 � F�1 � S�1(w̃)�
P̄(z, z?) = P(z) +R(z?)

?
= w, abort if not true

3 G(x,y) = P̄(x+ y)� P̄(x)� P̄(y) + P̄(0),

C = H(P||w) and D = H(C||w),

r0,1, . . . , r0,r, t0,1, . . . , t0,r 2R Fm+n, e0,1, . . . , e0,r 2R Fm,

r1,i = (z||z?)� r0,i, i 2 {1, . . . , r},
c0,i = Com(r0,i, t0,i, e0,i),

c1,i = Com(r1,i,G(t0,i, r1,i)� e0,i), i 2 {1, . . . , r},
COM = (c0,1, c1,1, c0,2, c1,2, . . . , c0,r, c1,r),

(D, COM) ) ↵1, . . . ,↵r 2 F,
t1,i = ↵i · r0,i � t0,i 2 Fm+n,

e1,i = ↵i · P̄(r0,i)� e0,i (i = 1, . . . , r),

Rsp1 = (t1,1, e1,1, . . . , t1,r, e1,r),

(D, COM,Rsp1) ) (ch1, . . . , chr),

Rsp2 = (rch1,1, . . . , rchr,r),

� = (C, COM,Rsp1, Rsp2).

Fig. 4. Our blind signing protocol.
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4.4 Correctness

Theorem 1. Blind signatures generated by honest participants in the protocols

of our multivariate blind signature scheme will be accepted with probability 1.

Proof. The proof consists out of two steps. In the first step we show that, at
the end of the interactive process, the user obtains a solution (z, z?) of the
system P(x1) + R(x2) = w. This can be seen as follows. In the course of the
interactive protocol, the (honest) user chooses randomly a vector z?, computes
w? = R(z?) and w̃ = w � w? and sends w̃ to the signer. The (honest) signer
uses his private key to compute a vector z such that P(z) = w̃. Altogether, we
get P(z) +R(z?) = w̃ +w? = w �w? +w? = w, which means that (z, z?) is
indeed a solution of the public system P̄(x) = P(x1) +R(x2).
In the second step we simply use the correctness proof of the MQDSS [12] to
show that an MQDSS signature produced by an honest signer knowing a solution
to the public system P̄ is, by an honest verifier, accepted with probability 1.

5 Security

In this section, we analyze the security of our construction, assuming abstractly
that Rainbow is secure. (For a concrete security analysis of the underlying Rain-
bow scheme we refer to [21].) For this, we have to show the blindness and one-
more-unforgeability of the derived scheme.

5.1 Blindness

Theorem 2. Assume that the distribution of R(x) for uniform x 2 Fm
q is com-

putationally indistinguishable from uniform, and assume that a perfectly hiding

commitment scheme is used. Then our multivariate blind signature scheme pro-

vides blindness against any computationally bounded adversary. In particular,

for all PPT adversaries A, their advantage in the blindness game (of Section 2)

for our scheme is at most negligible:

8A .AdvblindnessMBSS (A)  negl .

Proof. The adversary has to link w̃ from one interaction, to the pair (d,�) from
another interaction. Due to the perfect zero-knowledge property of the perfectly
hiding commitment scheme, � contains no information about the solution (z, z?)
and hence no information about R(z?) or P(z). Therefore the adversary’s task
is equivalent linking w̃ to d, since knowledge of � gives him no advantage. How-
ever, z? is chosen uniformly at random and so R(z?) is computationally indis-
tinguishable from uniform. As a result, the blinded message w̃ = w �R(z?) is
computationally indistinguishable from uniform and no polynomial-time adver-
sary can compute any predicate of w from w̃ with more than a negligible success

probability. This includes the predicate H(d)
?
= w or any similar predicate that

would allow the adversary to link w̃ to d.
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5.2 Universal One-More-Unforgeability

Theorem 3. If Rainbow is secure and if finding a solution (x1,x2) to P(x1) +
R(x2) = 0 for a randomly chosen quadratic map R : Fm

q ! Fm
q and a Rainbow

public key P : Fn
q ! Fm

q is a hard problem, then our multivariate blind signa-

ture scheme satisfies universal-one-more-unforgeability against computationally

bounded adversaries. That is to say, for all PPT adversaries A, their advantage

in winning the universal-one-more-unforgeability game (of Section 2) is at most

negligible:

8A .Advuniversal�one�more�unforgeability

MBSS (A)  negl .

Proof. We present a sequence of games argument showing that any adversary
winning the Universal-One-More-Unforgeability game logically implies that the
mentioned hard problem is e�ciently solvable.
Let Game 0 be the universal-one-more-unforgeability game as defined in Sec-
tion 2. By assumption, we have an adversary A who wins with noticeable prob-
ability in polynomial time.
Let Game 1 be the universal-one-more-unforgeability game but for the modified
blind signature scheme where for each signature knowledge of (z, z?) satisfying
P(z) + R(z?) = H(d) is proven interactively using the protocol of Section 3.2,
instead of producing a non-interactive proof �. The simulator can win this game
by simulating an instance of Game 0 and presenting the Game 0-adversary
with a random oracle that is programmed to respond with the same challenge-
message that the simulator receives from the challenger.
Let Game 2 be the universal-one-more-unforgeability game for the modified
scheme that drops blindness altogether. Instead of proving knowledge of (z, z?)
in zero-knowledge, knowledge is proven straightforwardly by simply sending this
pair to the challenger. The simulator can win this game by simulating Game 1
and using the extractor machine associated with the zero-knowledge proof to
obtain (z, z?).
Let Game 3 be the universal unforgeability under chosen message attack game
for the signature scheme whose public key is (P,R), with the additional option
for the adversary to query inverses under P as long as the message d?, the mes-
sage for which a signature is to be forged, was not yet sent. The simulator wins
this game by simulating Game 2. The blind-signature requests are answered by
querying for an inverse under P. After the adversary outputs his list L of mes-
sage / signature pairs, the simulator requests the message d? from the challenger
for which a signature is to be forged. This message is relayed to the simulated
adversary.
Let Game 4 be the proper universal unforgeability under chosen message at-
tack game for the signature scheme whose public key is (P,R), i.e., without the
ability to query for inverses under P. Heuristically, the same adversary that wins
Game 3 should win Game 4. The reason is that the ability to query inverses
under P before d? is known does not help the adversary at all. Since P is a
Rainbow public key and Rainbow is secure in its own right, the ability to query
inverses should not help the adversary to either recover the secret key or find
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his own inverses. Otherwise it would be possible to mount an attack exploiting
this fact.
Let Game 5 be the following non-interactive game, or problem: given (P,R),
find (x1,x2) 2 Fn

q ⇥ Fm
q such that P(x1) +R(x2) = 0. The simulator can solve

this problem by picking a random s 2R Fm
q . He then simulates Game 4 and

presents its adversary with (P,R + s) and with access to the backdoored ran-
dom oracle H0(x) = P(H1(x)) + R(H2(x)) + s, where H1 : {0, 1}⇤ ! Fn

q and
H2 : {0, 1}⇤ ! Fm

q are true random oracles. Under the (very reasonable) assump-
tion that the distribution of H0 is computationally indistinguishable from that of
a true random oracle, the adversary’s winning probability is still significant. The
simulator answers a signature query d 2 {0, 1}⇤ with (x1,x2) where x1 = H1(d)
and x2 = H2(d), which is necessarily a valid signature from the point of view
of the adversary who can verify that P(x1) + R(x2) + s = H0(d). When the
adversary indicates he is done with querying signatures, the simulator chooses a
new message d?, programs H0(d?) = s, and sends d? to the adversary. A winning
adversary therefore solves P(x1) + R(x2) + s = s, which is hard because it is
equivalent to solving P(x1) +R(x2) = 0. This concludes the proof of Thm. 3.

One of the premises of Thm. 3 remains to be shown: that finding a solution
to the system P̄(x) = P(x1) + R(x2) = 0, which is a system of m quadratic
equations in n + m variables, is a di�cult task. We have no rigorous proof for
this (such a proof would imply P 6= NP) but we justify making this assumption
based on common hardness arguments from MQ cryptography. In particular,
there are two attack strategies known against multivariate systems:

Direct Attacks: In a direct attack, one tries to solve the system P̄(x) = 0
as an instance of the MQ Problem. Since the system P̄ is underdetermined,
there are two possibilities to do this. One can use a special algorithm against
underdetermined multivariate systems [30] or, after fixing n of the variables, a
Gröbner Basis algorithm such as Faugéres F4 [10]. For suitably chosen parame-
ters, both approaches are infeasible.

The second possibility to solve a multivariate system such as P 0 are the so
called Structural Attacks. In this type of attack one uses the known structure
of the system P̄ in order to find a decomposition P̄ into easily invertible maps.
Note that, in our case we can write

P̄(x) = P(x1) +R(x2)

= S � F � T (x1) + S � S�1 �R| {z }
R0

(x2)

= S � (F +R0)| {z }
F 0

�T 0(x),

where the matrix T’ representing the linear transformation T 0 is given by

T 0 =

✓
T 0
0 1m

◆
2 F(n+m)⇥(n+m).
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In order to solve the system P̄ using a structural attack, we have to use the
known structure of the map F 0 = F + S�1 � R to recover the linear maps S
and T 0 (or, since the structure of T 0 is mostly known, the matrix T ). However,
since the coe�cients of both S and R are chosen uniformly at random, the
map R0 = S�1 � R is a random quadratic map over Fm. The only structure
we can use for a structural attack therefore comes from the map F , which is
the central map of the underlying multivariate signature scheme. Therefore, we
are in exactly the same situation as if attacking the underlying multivariate
scheme using a structural attack. This means that a structural attack against
our blind signature scheme is at least as hard as a structural attack against the
underlying multivariate signature scheme. By choosing the parameters of the
underlying scheme in an appropriate way, we therefore can prevent this type of
attack against our blind signature scheme.

5.3 Quantum Security

The technique proposed in [12] is capable of transforming (2n + 1)-pass zero-
knowledge proofs into non-interactive zero-knowledge proofs that are secure
against classical adversaries in the random oracle model. However, the behaviour
of this transform against quantum adversaries is not well understood because
the random oracle should be accessible to the quantum adversary and answer
queries in quantum superposition, and many standard proof techniques do not
carry over to this setting. See Boneh et al. [2] for an excellent treatment of proofs
that fail in the quantum random oracle model.
Formally proving soundness against quantum adversaries seems to be a rather
involved task beyond the scope of this paper. Instead, we are content to con-
jecture that there exists a commitment scheme such that the technique of [12]
results in a non-interactive zero-knowledge proof that is secure against quantum
adversaries as well as classical ones. This conjecture is implicit in the works of
Sakumoto et al. [28], and Hülsing et al. [12].

6 Discussion

6.1 Parameters

In this section we propose concrete parameter sets for our blind signature scheme.
As observed in the previous section, we have to choose the parameters in a way
that

a) solving a random system ofm quadratic equations inm variables is infeasible,
b) inverting an MQ public key with the given parameters is infeasible, and
c) a direct attack against a system of m quadratic equations in n+m variables

is infeasible.

Since condition (a) is implied by (c), we only have to consider (b) and (c). In order
to defend our scheme against attacks of type (b), we follow the recommendations
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of [21]. Regarding (c), we have to consider that the system P(x1) +R(x2) = w
is highly underdetermined (in the case of P being a Rainbow public key, the
number of variables in this system exceeds the number of equations by a factor
of about 3). As a result of Thomae et al. shows, such systems can be solved
significantly faster than determined systems.

Proposition 1. [30] Solving an MQ system of m equations in n = ! ·m vari-

ables is only as hard as solving a determined MQ system of m�b!c+1 equations.

According to this result, we have to increase the number of equations in our
system by 2 (compared to the parameters of a standard Rainbow instance).
Table 1 shows the parameters we propose for our scheme for various targeted
security levels.

security parameters # rounds public key private key blind sig.
level (bit) (F, (v1, o1, o2)) size (kB) size (kB) size (kB)

80 (GF(31),(16,18,17)) 84 29.4 20.1 11.5
100 (GF(31),(20,22,21)) 105 54.6 36.6 17.6
128 (GF(31),(25,27,27)) 135 106.8 70.2 28.5
192 (GF(31),(37,35,35)) 202 342.8 219.0 63.2
256 (GF(31),(50,53,53)) 269 802.4 507.1 111.9

Table 1. Proposed parameters for our blind signature scheme (GF(31)).

6.2 E�ciency

During the interactive part of the signature generation process, the signer has
to generate one Rainbow signature for the message w̃ = w �w?.
For the user, the most costly part of the signature generation is the repeated
evaluation of the system P̄(x) = P(x1)+R(x2). During the computation of the
commitments c0,i and c1,i (i = 1, . . . , r) (step 2 of the signature generation
process) this has to be done 3 · r times (one evaluation of G corresponds to
3 evaluations of P̄). In step 4 of the process (computation of e1,i) we need r
evaluations of P̄. Altogether, the user has to evaluate the system 4r times.
During verification, the verifier has to compute the commitments cchi,i (i =
1, . . . , r). If chi = 0, he needs for this 1 evaluation of P̄, in the case of ch2 = 1 he
needs 4 evaluations. On average, the verifier needs therefore r

2 · (1 + 4) = 2.5 · r
evaluations of the system P̄.
While the system P̄ consists of m quadratic equations in m + n variables, the
inner structure of the system can be used to speed up the evaluation. In fact,
the system P̄ is the sum of two smaller systems P : Fn ! Fm and R : Fm ! Fm.
Therefore, we can evaluate P̄ by evaluating P and R separately and adding the
results.
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6.3 Implementation

We implemented all functionalities in Sage [27] to prove concept validity. Ta-
ble 2 contains the timing results for the matching parameter sets of Table 1,
demonstrating that our scheme is somewhat e�cient and practicable even for
very poorly-optimized Sage code. These results were obtained on a 3.3 GHz Intel
Quadcore with 6,144 kB of cache.
Despite of these relatively large numbers, we are very optimistic about the
speed of our blind signatures when implemented in a less abstract and more
memory-conscious programming language. For instance, Hülsing et al.’s opti-
mized MQDSS manages to generate (classically) 256-bit-secure signatures in
6.79 ms and verify them in even less time [12]. As the MQDSS represents the
bottleneck of our scheme, a similarly optimized implementation could potentially
drop signature generation and verification time by several orders of magnitude.

sec. lvl. Key Gen. Sign (Signer) Sig. Gen. (User) Sig. Verification

80 4,007 7 2,018 1,424
100 9,392 13 3,649 2,656
128 25,517 19 7,760 5,505
192 87,073 41 23,692 16,040
256 613,968 103 86,540 59,669

Table 2. Timing results of a Sage implementation of our blind signature scheme. All
units are milliseconds, except for the security level.

6.4 Comparison

Table 3 shows a comparison of our scheme to the standard RSA blind signature
scheme and the lattice-based blind signature scheme of Rückert [26]. The RSA
blind signature scheme does not o↵er any security against quantum computers.
The public keys of Rückert’s scheme are smaller than those of our scheme, al-
though ours are still competitive. Like the standard RSA blind signature scheme,
our scheme requires 2 steps of communication between the user and the signer
in order to produce the blind signature. This is in contrast to Rückert’s scheme
where this number is 4. More importantly, our scheme outperforms that of Rück-
ert in terms of signature size.
At this point, an apples-to-apples comparison of operational speed is not possi-
ble. Nevertheless, regardless of speed, the main selling point of our scheme is its
reliance on di↵erent computational problems from those used in other branches
of cryptography, including lattice-based cryptography.
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Security Scheme comm. Pub. key Sig. size Post-
lvl. (bit) size (kB) (kB) quantum?

76
RSA-1229 2 1.2 1.2 ⇥

Lattice-1024 4 10.2 66.9 X
Our scheme(GF(31),16,18,17) 2 29.4 11.5 X

102
RSA-3313 2 3.3 3.3 ⇥

Lattice-2048 4 23.6 89.4 X
Our scheme(GF(31),20,22,21) 2 54.6 17.6 X

Table 3. Comparison of di↵erent blind signature schemes. The secrutiy levels are
adopted from Rückert [26].

7 Conclusion

In this paper we proposed the first multivariate based blind signature scheme.
Our scheme is very e�cient and produces much shorter blind signatures than
the lattice based scheme of Rückert [26], making our scheme the most promising
candidate for establishing a post-quantum blind signature scheme.
Our construction is notably generic. While we only show that it applies to Rain-
bow and MQDSS, we use their properties abstractly and it is perfectly conceiv-
able that another combination of trapdoor-based MQ signature scheme with a
non-interactive proof of knowledge of the solution to an MQ system will give
the same result. Indeed, our design demonstrates that the combination of a ded-
icated signature scheme with an identification scheme relying on the same hard
problem, is a powerful construction — and may apply in other branches of cryp-
tography as well.
Lastly, one major use case of blind signatures is anonymous identification. In this
scenario, one may reasonably dispense with the transformed signature scheme
and instead directly use the underlying interactive identification scheme, thus
sacrificing non-interactivity for less computation and bandwidth. Likewise, other
use cases such as anonymous database access require reusable anonymous creden-
tials. Our scheme can be adapted to fit this scenario as well, simply by specifying
that all users obtain a blind signature on the same public parameter.
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