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Abstract. This paper presents a novel private presence protocol, re-
ferred to as MP3, where the service provider does not have any knowledge
of the social graph of its users. In prior work, a private presence proto-
col, referred to as DP5, was presented. However, the size of the presence
database in this protocol grows rapidly as the number of users increases;
this limits its scalability and increases its cost. In the proposed protocol,
the size of the presence database is reduced significantly, enabling signif-
icantly cheaper registration and lookup compared to that of DP5. MP3
requires about two-thirds the bandwidth of DP5 for N = 200 000 users
and about one-half the bandwidth of DP5 for N = 1 000 000 users. Fur-
thermore, these savings grow asymptotically with the number of users.
Additionally, the client-facing latency in MP3 is an order of magnitude
less than that of DP5. We provide an evaluation of the performance and
scalability of both protocols.

1 Introduction

Due to the recent threat and concern of government surveillance and collection
of user data [1], an increasing number of services have emerged with the goal of
protecting users’ privacy from the provider of the service. A common approach
is end-to-end secure messaging, which is currently employed in services such
as Apple’s iMessage, Open Whisper Systems’ Signal Protocol, and Facebook’s
Messenger [2–4]. Secure messaging hides the content of the conversation from
the provider by using strong cryptographic techniques, but the metadata of the
conversation is still known to the service provider.

A critical part of secure messaging is presence, i.e., knowing when a friend is
online. Although secure messaging providers do not have access to the plaintext
conversation, they still have access to the set of friends of every user. This means
that these services know the social graph of their users as well as the presence
status of every user at any given time. To have a truly private communication
platform, the metadata of the communication must also be protected.

An existing solution to this problem is DP5—the Daghstul Privacy Preserv-
ing Presence Protocol P—proposed by Borisov, Danezis, and Goldberg [5]. DP5
is the first private presence protocol to leak no information about the social
graph to third parties and limit the information retained by the service itself.
DP5 allows its users to see the online status of their friends in a completely



private manner. It utilizes Private Information Retrieval (PIR) [6] for querying
the service for a given user’s buddy’s presence.

The major weakness of DP5 is its lack of scalability for a large number
of users. The presence database of DP5 grows much more rapidly than the
number of users of the service. This results in a very expensive service for even
a small number of users. To overcome this bottleneck, we propose MP3—the
Minnesota Private Presence Protocol. MP3 maintains the same security goals as
DP5. This is elaborated in Section 2.3 and Section 3.7. Compared to DP5, MP3
assumes that revoking and unrevoking friends is uncommon and thus we are
able to significantly reduce the size of the presence database by using a dynamic
broadcast encryption scheme [7]. As a result, MP3 is significantly cheaper to run
for even a relatively modest user base. Additionally, these savings increase as the
number of users increase. The key contribution of this paper lies in significantly
reducing the size of the presence database compared to DP5; this allows cheaper
registration and lookup queries in the context of the bandwidth required. The
client-facing latency of MP3 is also an order of magnitude less than that of DP5
due to the smaller presence database.

This paper is organized as follows. Section 2 describes the background, goals,
and related work pertaining to the MP3 protocol. Section 3 presents a detailed
description of the MP3 protocol. Section 4 analyzes the performance of MP3
and compares it to that of DP5.

2 Background

The primary functionality of a private presence protocol is to allow for the
registration of one’s online presence and to allow for the query of the presence
status of one’s buddies in a completely private manner.

2.1 DP5 Overview

Since our design shares many characteristics with DP5, we give a brief overview
of the protocol here. DP5 uses Private Information Retrieval (PIR), in which a
database is distributed to several servers so that a user can query the servers
to retrieve a specific record without revealing which record they retrieve. Given
this functionality, a “trivial” private presence protocol would have each user A
with nA friends encrypt nA presence records recording their status (and possibly
other information, such as a contact address), with a shared key for each friend,
and periodically upload this information to a presence database. When A’s friend
B wants to check on A’s status, they would query the current database (using
PIR) for the presence records encrypted under the symmetric key A shares with
B. To hide information about the social graph, each user would need to pad
the number of presence records uploaded per period to some maximum value
denoted by Nfmax. This protocol results in a nearly quadratic-size database in
the number of users. Moreover, the server-side computational costs of PIR scale
linearly in the size of the database (and the bandwidth costs also increase, though
sub-linearly).

To combat this inefficiency, DP5 splits the presence service into two asym-
metric services. The primary, short-term, service is used to register and query



presence of users with the precision of short windows (on the order of minutes).
The secondary service is the long-term service, which is used to provide metadata
for querying during the short-term. The long-term service also provides friend
registration and revocation with the precision of long windows (on the order of
days). As in the “trivial” protocol, it is assumed that users share a unique secret
with each of their friends. Additionally, in order to not leak information about
how many friends a given user has, DP5 defines a limit of Nfmax as the maximum
number of friends a user may have.

In each period of the long-term service, a user (let’s say Alice) of DP5 will
upload her presence to the registration mechanism of DP5. This is referred to
as Alice’s long-term presence record. This record is actually several records,
one for each of Alice’s friends, padded with random records upto Nfmax. If,
Nfmax is on the order of the number of users of the service, then the long-term
presence database scales quadratically with the number of users, which in turn
increases the amount of bandwidth and CPU this service requires. These long-
term records contain information used by her friends to identify her during the
short-term period. Then, during the short-term period, Alice uploads a single
record to the short-term presence database in each short-term period she is
online. Additionally, a single record containing a signature is uploaded to an
auditable signature database during every short-term period. Thus, the short-
term service, which is queried more often, grows only linearly with the number
of online users.

To improve the DP5 protocol, we address the issue of scaling in the long-term
service of DP5 by reducing the number of records Alice uploads in each long-
term period to only a relatively constant number of records, yielding performance
closer to that of the short-term service. We leave the short-term service of DP5
unchanged as it is already quite cheap.

2.2 Threat Model

We make standard assumptions about the users and adversaries of MP3. They
are real world adversaries with common capabilities.

– We assume that honest users’ end systems are secure and not compromised.
We also assume that honest servers can maintain secrecy and integrity. Our
design maintains forward security and does not require servers to store any
long-term secrets.

– We allow the adversary to be an observer or a dishonest user of the system,
and we assume they have not made any recent breakthrough in computa-
tional cryptographic assumptions, and assume that they cannot distinguish
between different ciphertexts. More detailed assumptions are described in
the protocol description in Section 3.

– Our security properties are under the covert model, i.e., adversaries will not
act dishonestly if it would cause them to be detected and identified.

– Our protocol maintains availability against malicious parties. This is further
detailed in Appendix B.



2.3 Security Goals

Here, we describe the goals required for a private presence service. Our goals are
the same as the goals of DP5.

Privacy of presence and auxiliary data. The presence status of a user
and their auxiliary data should be available to only that user’s explicit friends.

Integrity of authentication and auxiliary data. The friends of Alice
should not accept the presence and auxiliary data unless it was submitted by
Alice.

Unlinkability of sessions. It should be infeasible for a user to be linked
between multiple uses of the service. The infrastructure and non-friend users
should not be able to link the presence of another between epochs.

Privacy of the social graph. No information about the social graph of
a user should be revealed to any other party of the service. More specifically,
friends should not learn about other friends and the infrastructure should not
learn any new information about a user.

Forward/Backward secrecy of the infrastructure. Any compromised
keys stored in the infrastructure servers should not reveal past or future infor-
mation that is secured with previous or future keys.

Auditability. All operations performed by the infrastructure should be au-
ditable. A user should detect when their friend registration or presence registra-
tion has not been performed honestly by the service provider.

Support for anonymous channels. The protocol should not require any
identifying information for operation. The use of an anonymous channel should
only enhance the privacy of the system and the service will not compromise the
anonymity of the user.

Indistinguishability of revocation, suspension, and offline status. A
user is revoked if they are no longer able to query the presence status of the buddy
that revoked them. A suspension is a temporary revocation, i.e., for some period
of time, a user cannot query the presence status of the buddy that suspended
them. This means a suspended buddy can be “unrevoked.” Revocations and
suspensions should not be distinguishable from being offline. For example, if
Bob’s buddy Alice appeared to be offline, Bob would not know if he was revoked
or suspended, or if Alice was genuinely offline. MP3 provides plausibly deniable
revocation and suspension of buddies. Plausibly deniable revocation means the
transcript does not prove a user has been revoked. However, if a user does not
see their friend come online for an extended period of time they may begin to
assume they have been revoked. This is discussed in further detail in Section 3.7.

2.4 Related Work

DP5 seems to have been the first and only previous work to address social graph
privacy in the context of presence services. Similar, but different, related work
includes Dissent [8] and Riposte [9] which offer anonymous micro-blogging ser-
vices; these systems are similar to private presence in that posting a micro-blog
implies the author was online. Dissent is based on a DC-net with a client-server
architecture. Clients in Dissent must form a group to post anonymous messages
for each other using distrusted servers. Dissent provides anonymity within a



static group. Riposte utilizes a novel private database writing mechanism based
on techniques of PIR. Both of these systems have high latency when dealing
with large anonymity sets and are not concerned with social graph privacy.

Two other similar and relevant anonymous messaging/microblogging systems
that build on PIR techniques include Riffle [10] and Pung [11]. These systems
allow for a user to send a message to their friends without revealing the social
graph of the users. These messages could be used to indicate presence. However,
these two systems assume every user uploads a message during every epoch.
This implies that all users must be present at all times which is unrealistic and
negates the need for a private presence protocol.

3 The MP3 Protocol

3.1 Overview

In this section, we provide an overview of MP3. MP3 is composed of two databases,
a long-term database and a short-term database. The short-term database con-
tains the presence status and information of a user. A new short-term database
is generated on the order of minutes (5 minutes), we refer to these as short-term
epochs. The long-term database contains information for a user to identify their
friends’ short-term database entries. A new long-term database is generated less
frequently (once every 24 hours), these are referred to as long-term epochs. Al-
ice uploads her presence at most once for every long-term and short-term epoch.
When Bob wants to check if his friend Alice is online, he first queries the long-
term database and retrieves Alice’s entry. Then he computes her short-term
identifier and queries the short-term database for her presence. Each long-term
database entry of a user contains information for looking up the next long-term
database entry of that user. Alice may be unable to upload every long-term
epoch so MP3 keeps the most recent long-term databases corresponding to 30
days.

The database entries are simple 〈key, value〉 pairs where the key is a unique
identifier for a user in that specific epoch. These databases are queried using a
hash-based PIR protocol of retrieving 〈key, value〉 pairs. Since these databases
are queried with PIR, the infrastructure does not learn any information about
a user’s queries. In our implementation users upload their database entries to a
single registration server and use a distributed PIR protocol with Nlookup servers
for database queries. Similar to DP5, when querying the long-term database the
users must query all long-term databases to avoid revealing which database
contained the entry they needed.

The short-term database contains a single entry (presence message) per on-
line user. For Alice (a) we denote presence message as ma(i) during short-term
epoch ti. This presence message may contain information such as how to contact
Alice or a public key. If ma(i) is not present in during ti, Alice is assumed to
not be online.

MP3 uses a Dynamic Broadcast Encryption (DBE) [7] scheme for long-term
database entries. DBE allows Alice to create a single constant-sized ciphertext
that can be decrypted by all of her friends. Before participating in MP3, Alice



generates a single DBE encryption key (mk) and a decryption key (dkaf ) for
each friend (f). During long-term epoch Tj Alice creates a DBE ciphertext with
her short-term identity information for all short-term epochs that occur during
Tj .

The dynamic part of DBE allows Alice to revoke decryption keys so the re-
voked keys cannot decrypt future ciphertexts. We utilize this to allow Alice to
revoke up to Nrev friends in each long-term epoch. To provide plausible deniabil-
ity of revocation, Alice distributes new decryption keys to the revoked friends. If
Alice wants to truly revoke the friend she gives them a new randomly generated
decryption key. If they are revoked for deniability reasons she gives them a new
correctly generated decryption key. For the rest of the paper DBE.Revoke is
used to refer to DBE revocations and MP3.Revoke is used to refer to Alice
actually revoking a friend.

To unrevoke a previously MP3.Revoked friend, Alice constructs a special
long-term database entry using the revoked friend’s random decryption key. This
record DBE.Revokes the random key and issues a new valid decryption key.
This special entry must maintain Nrev DBE revocations to be indistinguishable
from a regular entry. MP3 allows Nunrev friends to be unrevoked during a single
long-term epoch. This means Alice uploads Nunrev + 1 entries, each of Nrev size
for a long-term epoch. One entry to distribute short-term lookup information to
her friends and possibly revoke Nrev friends. And Nunrev entries that allow her
to unrevoke friends.

Finally, to prevent forged records, we employ two signature schemes, one for
long-term presence records and another for short-term presence records. Thus,
all of Alice’s friends can be confident that the record they received from MP3’s
lookup mechanism can only belong to Alice. We use Elliptic Curve Digital Signa-
ture Algorithm (ECDSA) [12] for long-term epochs and Boneh-Lynn-Shacham
(BLS) [13] signature scheme for short-term epochs. Moreover, an auditable sig-
nature database is employed during each short-term epoch.

3.2 Cryptographic Primitives

It is assumed that everyone participating in MP3 shares a set of known cryp-
tographic primitives. We assume three primes pdbe, pdsa, pbls, for simplicity we
omit the subscripts when it is clear which prime we are discussing. Let G1 and
G2 be two cyclic groups of prime order pdbe and let GT be a cyclic group also
of prime order pdbe. Denote Zp as the ring of integers modulo p and denote Z×p
as the set of units in Zp, also denote g ← G as randomly selecting an element g
from a set G. An efficiently computable asymmetric pairing defined by the map
e : G1 ×G2 → GT is known so that for generators g1 ∈ G1, g2 ∈ G2 and for all
u, v ∈ Zp

e(gu1 , g
v
2) = e(g1, g2)uv

The decisional Diffie-Hellman problem and the decisional co-Diffie-Hellman prob-
lem are assumed hard for G1 and G2. It is also assumed that our pairing is
non-degenerate.

MP3 utilizes the following:



– ECDSA [12] signature scheme with group Gdsa of prime order pdsa with
generator gdsa.

– BLS signature scheme [13] with groups G3, G4, G5 of prime order pbls with
g3 generating G3 and an efficiently computable asymmetric pairing defined
by the map ebls : G3 ×G4 → G5.

– PRFK , a keyed pseudorandom function that maps a short-term epoch times-
tamp to keys for AEAD described below.

– H1, an efficiently computable hash function that maps the concatenation of
the byte representations of long-term epoch timestamps and elements of GT
to elements of Z×p .

– H2, an efficiently computable hash function that maps long-term public key
to shared identifiers.

– H3, an efficiently computable hash function that maps elements of GT to
elements of Z×p .

– H4, an efficiently computable hash function that maps elements of G1 to
keys in the pseudorandom function above.

– H5, an efficiently computable hash function that maps short-term epoch
timestamps to elements of G4.

– H6, an efficiently computable hash function that maps elements of GT to
shared identifiers.

– AEADIV
K (m), an authenticated encryption function where m is the message,

K is the key, and IV is the initialization vector.

3.3 Dynamic Broadcast Encryption

In our construction of MP3, long-term epochs share many characteristics with
a broadcast encryption scheme. In the context of MP3’s long-term epoch, we
use a dynamic broadcast encryption scheme with constant-size ciphertexts and
decryption keys.

The definition of a Dynamic Broadcast Encryption (DBE) [7] is slightly dif-
ferent from a conventional broadcast encryption scheme in that it involves two
authoritative parties: a group-manager and a broadcaster. The job of the group
manager is to grant new users access to the group. The job of the broadcaster
is to encrypt and transport messages to this group of users. When a message is
encrypted, some members of this group can be revoked temporarily (suspended)
or permanently (revoked) from decrypting the broadcasted message. Formally,
a DBE scheme with revocation is a tuple of probabilistic algorithms (Setup,
Join, Encrypt, Decrypt, Revoke, Update). These algorithms rely on an
asymmetric pairing as described in Section 3.2.

Our design relies on the DBE scheme proposed by Delerablée et al. [7]. In our
use case, every user is both a group-manager and a broadcaster. We introduce
two additional operations (ShiftMK, ShiftDK) to support MP3’s plausibly de-
niable revocation and suspension. Our modifications are detailed in Appendix A.
We provide the relevant components of DBE as it pertains to MP3 below:

– DBE.Setup() - generates a manager key as the tuple mk := (G,H, γ), where
G← G1 and H ← G2 are randomly selected generators and γ ← Z×p .



– DBE.Join(mk = (G,H, γ)) - allows a user to friend someone by sharing a
decryption key derived from their manager key as the tuple dk := (x,A,B),

where x ← Z×p is fresh, A := G
x
γ+x , B := H

1
γ+x . If x and γ happen to be

inverses, resample x. In our construction of MP3, we add an additional com-
ponent to the decryption key, κ, a shared random symmetric key for AEAD
that is persistent even when (x,A,B) is reassigned. Thus, the decryption
key derived is dk := (x,A,B, κ).

– DBE.Encrypt(mk = (G,H, γ)) - generates a shared secret K := e(G,H)w

and two ciphertexts: C1 := Gwγ and C2 := Hw, where w ← Z×p .
– DBE.Decrypt(dk = (x,A,B, κ), C1, C2) - takes as input a decryption key

and the ciphertexts and computes the shared secret K = e(C1, B) · e(A,C2).
Notice that this is the same shared secret computed by the broadcast man-
ager in DBE.Encrypt.

– DBE.Revoke(mk = (G,H, γ), xr, Br) - revokes the user with decryption
key that contains xr and Br from the group of the user with manager key

mk by updating H := H
1

γ+xr . The user then advertises xr and H
1

γ+xr to all
their buddies.

– DBE.Update(dk = (x,A,B, κ), xr, Br) - every non-revoked user with de-
cryption key dk = (x,A,B, κ) must update their decryption key via B :=(
Br
B

) 1
x−xr to revoke the user who owns xr and Br. Note that the revoked

buddy will not be able to update their B value due to not being able to
compute 1

xr−xr . It is important to notice that this revocation is explicit to
the revoked buddy, but in our construction of MP3 we add some auxiliary
functionality in the long-term epoch to make revocations plausibly deniable
as described in Section 3.7.

– DBE.ShiftMK(mk = (G,H, γ), λ) - updates G := Gλ and H := Hλ.
– DBE.ShiftDK(dk = (x,A,B, κ), λ) - updates A := Aλ and B := Bλ.

3.4 Setup

Initialization. To participate in MP3, Alice generates a manager key
mka := DBE.Setup()

She also generates a set of private-public base key pairs
(Ya,init, Pa,init) and (za,init, qa,init)

where Ya,init is a randomly generated ECDSA private key and Pa,init = g
Ya,init
dsa ,

and za,init is a BLS private key randomly selected from Z×p and qa,init = g
za,init
3 .

Adding buddies. For every friend f of Alice, she derives a decryption key
dkaf := DBE.Join(mka)

and shares it along with her public base keys out-of-band. Assuming that the
current long-term epoch is Tj , Alice also shares her most recent shared secrets
K, from DBE.Encrypt, and R, her most recently generated random bit-string
R, i.e., Alice shares1 (dkaf , Pa,init, qa,init,K,R) with friend f out-of-band.

1 If this is the very first epoch, Alice must generate an initial K := Kinit and R := Rinit

to share with her buddies to bootstrap the protocol.



3.5 Long-term Epoch

Registration. To register for epoch Tj , Alice must register during epoch
Tj−1. Let Tj′ be the last long-term epoch in which Alice has registered. To
begin, Alice computes a new long-term private-public key pair for Tj

hj := H1(Tj ‖Kj′ ⊕Rj′), Ya(j) := Ya,init · hj , Pa(j) := P
hj
a,init

as well as a new short-term private-public key pair for all short-term epochs
during Tj

za(j) := za,init · hj , qa(j) := q
hj
a,init

where Kj′ is Alice’s shared secret from calling DBE.Encrypt in epoch Tj′ and
Rj′ is a random bit-string generated in epoch Tj′ . The ⊕ between Kj′ and Rj′

implicitly converts Kj′ to a bit-string of some length and the length of Rj′ is
defined to be that length.

During a long-term registration, Alice has the opportunity to revoke or sus-
pend, or unrevoke a certain number of her buddies. Denote the number of buddies
she can revoke or suspend at each long-term epoch as Nrev and the number of
buddies she can unrevoke at each long-term epoch as Nunrev.

Every long-term epoch registration, Alice will upload 1+Nunrev records to the
long-term presence database. A single record is for all her buddies she wishes
to continue being buddies with or that she wishes to revoke or suspend. The
remaining Nunrev records are for buddies she had previously suspended and
wishes to “re-friend.” Alice constructs the single record according to Algorithm
1 and she constructs the other Nunrev records according to Algorithm 2.

All long-term records are of the form
(a)︷︸︸︷
P ‖x1 ‖B1 ‖ · · · ‖ xNrev

‖BNrev︸ ︷︷ ︸
(b)

‖
(c)︷ ︸︸ ︷

E1 ‖ · · · ‖ ENrev ‖C1 ‖ C2︸ ︷︷ ︸
(d)

‖
(e)︷︸︸︷
R ‖ S︸︷︷︸

(f)

where (a) is a long-term identifier, (b) contains the x and B values of all buddies
to revoke or suspend, (c) contains new encrypted decryption keys for all buddies
revoked in (b), (d) contains the ciphertext components from DBE, (e) is a random
bit string, and (f) is the signature for the record that can be verified with (a).
Further details of how (b) and (c) are used to allow plausibly deniable revocation
and suspension are described in Section 3.7.

Upon receiving a record of the form
P ‖ x1 ‖B1 ‖ · · · ‖ xNrev

‖BNrev
‖ E1 ‖ · · · ‖ ENrev

‖ C1 ‖ C2 ‖R ‖ S
from Alice, the registration server verifies the signature S with P . If the signature
is valid, it computes IDa(j) := H2(P ) and stores the 〈key, value〉 pair
〈IDa(j), x1 ‖B1 ‖ · · · ‖ xNrev ‖BNrev ‖ E1 ‖ · · · ‖ ENrev ‖ C1 ‖ C2 ‖R ‖ S〉

Otherwise, if the signature is invalid, nothing is stored.

Lookup. To look up Alice’s presence for epoch Tj , Bob first requests the
metadata associated with the databases from each lookup server. Since all lookup
servers have the same database, the metadata should be the same, but in the
event that some of the servers are dishonest, he takes the majority of the received
metadata. The metadata contains information about the number of buckets and
size of the buckets. He then computes Pa(j) := P

H1(Tj‖Kj′⊕Rj′ )
a,init using Kj′ and



Algorithm 1 Alice computing her long-term presence record

Input:
mka = (Ga, Ha, γa), Alice’s manager key
(Ya(j), Pa(j)), Alice’s private-public key pair for Tj
R, the set of buddies’ decryption keys to MP3.Revoke or suspend
B, the set of buddies’ decryption keys to continue being buddies
Output: Long-term presence record

1: function
2: (C1, C2,K) := DBE.Encrypt(mka)
3: Generate and store a random bit-string Rj
4: λ := H3(K)
5: DBE.ShiftMK(mka, λ)

6: Store Kj := Kλ2

7: record := Pa(j)
8: n := Nrev − |R|
9: Bpadded := pad B with random decryption keys upto Nfmax

10: F := n decryption keys chosen uniformly from Bpadded

11: for each (x,A,B, κ) ∈ R ∪ F do

12: record := record ‖ x ‖H
1

γ+xr

13: DBE.Revoke(mka, x, B)
14: end for
15: for each (x,A,B, κ) ∈ R do
16: x′ ← Z×p , A′ ← G1, B′ ← G2 . Here, x′ is fresh
17: . Store the following in case we want to unrevoke this buddy
18: Store ((x′, A′, B′, κ), C1, C2, Rj) in a global set U
19: E := AEADj

κ(x′ ‖A′ ‖B′)
20: record := record ‖ E
21: end for
22: for each (x,A,B, κ) ∈ F do
23: . generate new and valid x, A, and B
24: (x′, A′, B′, ) := DBE.Join(mka)
25: E := AEADj

κ(x′ ‖A′ ‖B′)
26: record := record ‖ E
27: end for
28: Shuffle the ciphertexts E (the encrypted x ‖A ‖B) in record
29: record := record ‖ C1 ‖ C2 ‖Rj
30: S := ECDSA-SignYa(j)(record)
31: record := record ‖ S
32: return record
33: end function

Rj′ he queried from the most recent long-term epoch in which Alice registered,
and subsequently computes IDa(j) = H2(Pa(j)). Finally, he builds a PIR request
using the metadata for IDa(j) to retrieve a record of the form

x1 ‖B1 ‖ · · · ‖ xNrev
‖BNrev

‖ E1 ‖ · · · ‖ ENrev
‖ C1 ‖ C2 ‖R ‖ S

Bob then processes this long-term record according to Algorithm 3 and stores the
returned K and R values for computing Alice’s long- and short-term identifiers
in the next long-term epochs.



Algorithm 2 Alice computing Nunrev presence records to unrevoke buddies

Input:
U , the global set of buddies to unrevoke
Tj , the current long-term epoch
mka, Alice’s manager key
(Ya,init, Pa,init), Alice’s initial long-term epoch base keys
Kj stored from Algorithm 1
Rj stored from Algorithm 1
Output: list of Nunrev long-term presence records

1: function
2: ret := new list
3: for each ((x,A,B, κ), C1, C2, Rrevoked) ∈ U to unrevoke do
4: Remove ((x,A,B, κ), C1, C2, Rrevoked) from U
5: Krevoked := DBE.Decrypt((x,A,B, κ), C1, C2)
6: Yrevoked := Ya,init ·H1(Tj ‖Krevoked ⊕Rrevoked)

7: Prevoked := P
H1(Tj‖Krevoked⊕Rrevoked)

a,init

8: Runrevoked := Kj ⊕Rj ⊕Krevoked

9: record := Prevoked

10: . We concatenate enough bytes so the record is the same length as that of
Algorithm 1. We also make sure the byte encodings are of the correct type.

11: record := record ‖ 〈Nunrev − 1 encrypted random triples x← Z×p ‖A← G1 ‖B ← G2〉
12: . generate a fresh decryption key for the unrevoked buddy
13: (x′, A′, B′, ) := DBE.Join(mka)
14: record := record ‖AEADj

κ(x′ ‖A′ ‖B′)
15: Shuffle the record as in Algorithm 1 line 28
16: record := record ‖ C1 ‖ C2 ‖Runrevoked

17: Sunrevoked := ECDSA-SignYrevoked(record)
18: record := record ‖ Sunrevoked

19: store record in ret
20: end for
21: if number of buddies unrevoked < Nunrev then
22: . these records must be of the correct encoding
23: store random records in ret so that its length is Nunrev

24: end if
25: return ret
26: end function

3.6 Short-term Epoch

Registration. To register for epoch ti, Alice must register during ti−1. As-
sume that epoch ti is during epoch Tj . Recall that Alice computed the private-
public key pair (za(j), qa(j)) during the long-term registration for Tj . To begin,
Alice encrypts her presence message, ma(i) as follows:

ka(i) := PRFH4(qa(j))(ti) ca(i) := AEADi
ka(i)(ma(i))

She then computes the unforgeable signature:
sa(i) := H5(ti)

za(j)

Alice then uploads ca(i) ‖ sa(i) to the short-term registration server.



Algorithm 3 Bob processing the long-term record of Alice

Input:
Pa(j), Alice’s long-term key for Tj
x1 ‖B1 ‖ · · · ‖ xNrev ‖BNrev ‖ E1 ‖ · · · ‖ ENrev ‖ C1 ‖ C2 ‖R ‖ S, long-term record
Output: K and R for the next long-term epoch

1: function
2: . Only process the record if the signature is valid, otherwise the lookup server

was malicious
3: if S is valid signature for the record with Pa(j) then
4: plausiblyRevoked := false
5: for i = 1 to Nrev do
6: if xab 6= xi then
7: DBE.Update(dkab, xi, Bi)
8: else
9: plausiblyRevoked := true

10: end if
11: end for
12: if plausiblyRevoked then
13: for i := 1 to Nrev do
14: Try to decrypt Ei with κab
15: if successfully decrypted Ei then
16: (x′, A′, B′) := Ei decrypted with κab
17: xab := x′, Aab := A′, Bab := B′

18: end if
19: end for
20: . Note that we updated dkab in line 17
21: K := DBE.Decrypt(dkab, C1, C2)
22: return K, R
23: else
24: K := DBE.Decrypt(dkab, C1, C2)
25: λ := H3(K)
26: DBE.ShiftDK(dkab, λ)

27: K := Kλ2

28: return K, R
29: end if
30: end if
31: end function

Upon receiving Alice’s record, the short-term registration server will compute
ida(i) = H6(ebls(g1, sa(i))), and store 〈ida(i), ca(i)〉. Additionally, 〈ida(i), sa(i)〉
is stored in a short-term signature database to audit.

Lookup. To lookup Alice’s presence for epoch ti, Bob requests the metadata
associated with the short-term databases in the same manner as in the long-term

epoch. To begin, he first computes qa(j) := q
H1(Tj‖Kj′⊕Rj′ )
a,init using Kj′ and Rj′ he

queried from the most recent long-term epoch in which Alice registered. Then he
computes ida(i) := H6(ebls(qa(j), H5(ti)) which is equivalent to the registration
server’s computation of H6(ebls(g3, sa(i))) by the properties of pairings. He then
builds a PIR request for ida(i) to retrieve ca(i). Bob can be certain that ca(i)



is from Alice due to the unforgeable signature sa(i) by auditing the signature
database.

Bob can then compute ka(i) := PRFH4(qa(j))(ti) and decrypts ca(i) retrieving
ma(i). The decryption being successful implies that Alice is online during epoch
ti. As in the long-term epoch, in order to not leak information of how many
buddies Bob has, he must pad his lookup to Nfmax ids.

3.7 Details
Unrevoking and Unsuspending. For simplicity in this section we assume
Nrev = 1. The long-term presence record of Alice that MP3.Revokes Bob takes
the form

P ‖ xab ‖Bab ‖ Eab ‖ C1 ‖ C2 ‖R ‖ S
That is xab and Bab are Bob’s x and B values and Eab contains a triple of
random (x,A,B). encrypted with κab, i.e., x, A, and B were not generated from
Alice’s manager key. This means that for future epochs, Bob cannot compute the
proper K (Algorithm 3 line 21), and thus can no longer query for Alice. Alice can
unrevoke Bob by computing the incorrect K that he computes from when he was
revoked (Algorithm 2 line 5) and use this to upload a record that Bob can query
for. This record will allow Bob to compute the correct K and R values for Alice
for future epochs, as well as providing Bob with fresh x, A, and B values that
are generated from Alice’s manager key (Algorithm 2 line 14). This is possible
by storing the correct K value within the R value in this “unrevoking” record
(Algorithm 2 line 8). This allows Bob to compute the proper identifier for Alice
in the next long-term epoch. Thus, Bob can continue to query Alice’s presence
as before.

Alice’s friends must process all of her long-term database entries so they must
query all long-term databases. To allow users to be offline for extended periods
of time MP3 stores the previous 30 days worth of long-term database. If a user
does not come online for more than 30 days they must share new keys with all
of their friends. Revocations in the database entries are plausible deniable but a
user may be able to notice if a friend does not come online anymore indicating
they may have been revoked. This problem is inherent to presence systems.

Plausible Deniability of Revocation and Suspension. For MP3.Revoke
to be deniable a revoked user must not be able to determine they have been
revoked. MP3 implements this by DBE.Revoking users that have not been
MP3.Revoked and issues these users new valid DBE decryption keys. Where as
friends which are MP3.Revoked are issued a new random decryption key. For a
friend to determine if they have been MP3.Revoked they must be able to distin-
guish between valid and random decryption keys. We introduce DBE.ShiftMK
and DBE.ShiftDK to make the decryption keys indistinguishable. Appendix A
details a distinguisher if DBE.ShitfMK and DBE.ShiftDK are not used.

More formally, if a friend can distinguish a transcript where they have been
MP3.Revoked from a transcript where they have been DBE.Revoked but
not MP3.Revoked they can be used as a Decisional Diffie-Hellman (DDH)
distinguisher. That is, given (g, gx, gy, gz) determine if gxy = gz. We assume all
hash functions are modeled as random oracles.



We now quickly sketch the proof. If given a decryption key (x,A,B) and

ciphertext (C1 = Gw0γ , C2 = Hw0) and ciphertext (C ′1 = Gw1γλ, C2 = Hw1
1

γ+xλ)
where w0, γ, w1, and λ are random, and given (x′, A′, B′), determine if (x′, A′, B′)
are valid decryption keys or random. Given a DDH challenger we can construct
the above problem. Let the manager key mk = (G = g,H = gx, γ). Then

C1 = gw0γ , C2 = gxw0 . Define λ = y, thus mk′ = (G = gy, H = gz
1

γ+x , γ)

and C ′1 = gyw1γ , and C ′2 = gz
1

γ+xw1 . If a friend can determine they have been
MP3.Revoked they can win the DDH game.

Complexity Comparisons. During each long-term epoch in DP5, N ·Nfmax

records are stored, where each record is a constant size. Thus, the registration
bandwidth is Θ(N ·Nfmax). During each long-term epoch in MP3, N · (Nunrev +
1) records are stored, where each record’s length scales with Nrev. Thus, the
registration bandwidth complexity is Θ(N ·Nunrev ·Nrev). In reality, Nunrev and
Nrev will be relatively constant2 compared to N . This implies that (as functions
of N and Nfmax) the registration bandwidth complexities for DP5 and MP3 are
Θ(N ·Nfmax) and Θ(N), respectively.

With the PIR protocol used in both DP5 and MP3, the bandwidth cost per
query of a single record scales with the square root of the size of the database3.
Also, recall that each user must query for Nfmax buddies to not reveal any infor-
mation about their number of buddies. This implies that the bandwidth complex-
ities for an entire long-term epoch (assuming all users query) for DP5 and MP3

are Θ
(
N3/2 ·N3/2

fmax

)
and Θ

(
N3/2 ·N1/2

rev ·N1/2
unrev ·Nfmax

)
, respectively. Using

the same approximations for Nunrev and Nrev as above, this results in lookup

bandwidth complexities of Θ
(
N3/2 ·N3/2

fmax

)
for DP5 and Θ

(
N3/2 ·Nfmax

)
for

MP3. Similar arguments can be made for the shared short-term epoch of DP5
and MP3 and are summarized in Table 1.
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Fig. 1: Presence database sizes

4 Experimental Results
Implementation. Our MP3 library is implemented in 350 lines of C and
4000 lines of C++. The core cryptography relies on OpenSSL for AES, SHA-
256, and elliptic curve arithmetic and signatures; RELIC [14] for pairing-friendly

2 Arguments for why this is a valid assumption are discussed in Section 4.
3 As in the PIR protocol in DP5, we constructed r = d

√
ns e buckets and we can

upper bound the size of each bucket by
(
n
r

+
√

n
r

)
· s ≈

√
ns+

4
√
ns3 (here, s is the

size of each record in bytes); since a query results in an entire bucket, this scales
with the square root of the size of the database.
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Fig. 2: Lookup server bandwidth

curves; and Percy++ [15] for PIR. The groups G1, G2, and GT are defined by
the Optimal Ate pairing over a 256-bit Barreto-Naehrig curve. We use a 224-
bit Elliptic Curve, specifically secp224r1, for ECDSA, though the choice was
arbitrary. AEAD is implemented using AES in Galois/Counter Mode (GCM).
The PRFs and hash functions are implemented using SHA-256.

Evaluation. To evaluate the performance of MP3 vs. DP5, we simulated
both protocols in a “worst-case” scenario with the number of users ranging
from 1000 to 1 000 000 clients. To simulate the worst-case scenario, we had all
clients perform registration and lookup for all epochs. All simulations were run
on a machine with dual Intel Xeon E5-2630 v3 CPUs and 256GB of RAM. The
number of PIR servers (Nlookup) was held fixed at 3 for all setups and both
protocols. The equivalent of 1 year of execution were simulated in all setups.
For both MP3 and DP5, the most expensive components are the lookup servers
from both CPU and bandwidth perspectives.

Figure 1 compares the size of the presence databases for the long-term epoch
of MP3 and DP5 as well as the shared short-term epoch. If we fix Nrev and
Nunrev to small constants compared to N , it is obvious that the size of the
long-term database of MP3 is significantly less than that of DP5. A smaller
database implies cheaper lookup costs in the context of both bandwidth and
CPU. Additionally, we can raise Nrev quite a bit and still maintain a smaller
long-term database than that of DP5. It’s also important to see how cheap the
short-term database is relative to the long-term databases. Also note that the
presence database sizes are proportional to the registration bandwidth.
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Figure 3 compares the client-facing latency of the
long-term epochs of MP3 and DP5 as well as the
shared short-term epoch, for N = 100 000 users. The
latency of MP3’s long-term epoch is smaller than that
of DP5 due to the inherently smaller database. The
short-term epoch’s latency is even less as the short-
term databases are even smaller.

Figure 2 compares the bandwidth of a single long-
term lookup server for the long-term epoch of MP3
and DP5 as well as the shared short-term epoch. The same pattern occurs that we
saw in Figure 1 - for relatively constant Nrev and Nunrev, the bandwidth required
is significantly less for MP3 than for DP5 and the bandwidth requirements of
the short-term epoch are negligible compared to that of the long-term epochs.



Table 1: Bandwidth complexities comparing MP3 and DP5 as a function of N , Nfmax,
Nrev, and Nunrev.

Client Server
registration lookup registration lookup

long-term
DP5 Θ(Nfmax) Θ

(
N1/2 ·N3/2

fmax

)
Θ(N ·Nfmax) Θ

(
N3/2 ·N3/2

fmax

)
MP3 Θ(Nrev ·Nunrev) Θ

(
N1/2 ·N1/2

rev ·N1/2
unrev ·Nfmax

)
Θ(N ·Nrev ·Nunrev) Θ

(
N3/2 ·N1/2

rev ·N1/2
unrev ·Nfmax

)
short-term

DP5
Θ(1) Θ

(
N1/2 ·Nfmax

)
Θ(N) Θ

(
N3/2 ·Nfmax

)
MP3

Discussion of Scalability and Cost Improvements. A primary bottle-
neck in DP5 is its lack of scaling with large number of users, specifically for
long-term epochs. MP3 solves just that. The complexity for bandwidth usage of
all operations are summarized in Table 1.

The bulk of the cost in running a service such as MP3 or DP5 comes from
the bandwidth usage of the given protocol. Nrev and Nunrev are always less
than or equal to Nfmax by definition. In reality, with a 24-hour long-term epoch,
setting Nrev and Nunrev to a small constant is very reasonable4; therefore, MP3 is
significantly cheaper during long-term epochs, and thus overcomes the scalability
bottleneck of DP5.

In Figure 2a, with N = 1 000 000 users, Nfmax = 1000, Nrev = Nunrev = 5, we
can see that MP3 uses about half the bandwidth of that of DP5 and it’s evident
that the savings grow as the number of users increases.

5 Conclusion

The proposed protocol reduced the complexity and cost of the most expensive
component of DP5, i.e., the long-term presence database. In reference to DP5,
MP3 requires about half the bandwidth for N = 1 000 000 users, and this re-
duction only increases as the number of users increases. Therefore, MP3 is a
more efficient private presence protocol than DP5. Future work will be directed
towards formally proving the security properties of MP3.
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A Modifications to Dynamic Broadcast Encryption
Recall the operations of DBE from Section 3.3. Our modifications to DBE [7]
only add the DBE.ShiftMK and DBE.ShiftDK operations. These operations
are required for plausibly deniable revocations and suspensions. Recall that in a
long-term database record for Alice in which Bob is actually revoked, Bob’s old
decryption key (dkab) is revoked and he is issued a new, but invalid, decryption
key (dk′ab). Without DBE.ShiftMK and DBE.ShiftDK, Bob could use dk′ab
to invert the Update operation and detect whether he was revoked or not.

The inverse update function is:



– DBE.Update−1(dk′ = (x′, A′, B′, κ′), xr, Br) - takes as input a decryption
key and a revocation values and computes a new decryption key dk :=
(x′, A′, B, κ′) where B := Br

B′(x′−xr)
that can decrypt ciphertexts created be-

fore the revocation.

Assuming DBE.ShiftMK and DBE.ShiftDK are not in place, a revoked
user Bob can use DBE.Update−1 to detect that he has been revoked by Alice.
Given two long-term presence records of Alice, where the former has not revoked
Bob and the latter has revoked Bob, Bob can apply the DBE.Update−1 function
to his new decryption key and compute a decryption key for the former presence
record.

Let Bob’s decryption keys for the former presence record be dkab and let Bob’s
decryption key for the latter presence record (after calling DBE.Update−1) be
dk′ab. Also let C1, C2 be the ciphertext components from the former presence
record. To detect if he has been revoked, all he must do is check if DBE.Decrypt(dkab, C1, C2) 6=
DBE.Decrypt(dk′ab, C1, C2). If the statement is true, then Bob has been re-
voked by Alice.

By introducing DBE.ShiftMK and DBE.ShiftDK we create a one-way op-
eration to the revocation process of MP3; thus Bob cannot invert the DBE.ShiftMK
and DBE.ShiftDK functions without the knowledge of the plaintext of (C1, C2)
and therefore cannot detect whether or not he was revoked.

B Availability Against Malicious Parties
Some conventional approaches to ensure availability against malicious parties
cannot be applied directly to privacy-preserving protocols, as they can leak in-
formation. This causes several challenges: keeping the databases small, ensuring
the registration server stores all uploaded presence records, ensuring the lookup
servers store all presence records and do not modify them.

A malicious client could upload many presence records during a given epoch,
causing a denial of service (DoS) for all other clients. If a malicious client were
using an anonymous channel, authentication would compromise the anonymity of
that client, defeating the purpose of MP3. To eliminate this, k-times anonymous
authentication schemes have been proposed [17,18]. In these schemes, users are
guaranteed anonymity up to k times; that is, if a user authenticates k+ 1 times,
the identity of the user can be computed. Such private rate-limiting schemes
can be used to limit the number of times a client registers during a given epoch
without losing anonymity.

In the case that the registration server is dishonest and drops records, a user
could “friend themself” to ensure that their presence records are being stored,
by looking themself up during every epoch. Note that all presence records are
indistinguishable, so the registration server can not target specific records for
dropping.

Lastly, in the case that the lookup servers are dishonest and modify the
database, Devet et al. propose a robust PIR scheme [19] that allows detection
of malicious servers. This detection requires at least t+ 2 honest servers, where
t is the number of servers needed to collude to be able to determine the data in
a query. This robust PIR scheme is implemented in MP3.


