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Abstract. At Financial Cryptography 2003, Jakobsson, Hubaux, and
Buttyán suggested a lightweight micro-payment scheme aimed at encour-
aging routing collaboration in asymmetric multi-hop cellular networks.
We will show in this paper that this scheme suffers from some weaknesses.
Firstly, we will describe an attack which enables two adversaries in the
same cell to communicate freely without being challenged by the opera-
tor center. We will put forward a solution to fix this protocol. Then we
will describe another method that allows an attacker to determine the
secret keys of the other users. This attack thwarts the micro-payment
scheme’s purpose because an attacker can thus communicate without
being charged. Finally we will suggest some solutions to counteract this
attack.
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1 Introduction

Nowadays, architectures for wireless communication are mostly based on single-
hop cellular networks, e.g., the Global System for Mobile communications (GSM)
[1]. Within this framework, mobile stations can access the infrastructure with
a single hop and base stations can also reach each mobile station in its cell
with one hop. However, such infrastructures require multiple fixed base sta-
tions to encompass the service area, which can lead to numerous problems. Con-
versely, multi-hop networks, also called ad-hoc networks, do not rely on a fixed
infrastructure; mobile stations communicate amongst themselves using multi-
hop routing. Though these networks have some advantages, mainly their low
cost, they bring with them several problems, chiefly related to the routing pro-
cess (congestion, selfishness, etc.). Multi-hop cellular networks [3] mitigate these
problems by combining conventional single-hop cellular networks and multi-
hop networks. Here, the multi-hop routing is only used in order to reach the
closest base station and to link the destination base station with the recipi-
ent user. A variant of this kind of network, introduced by Jakobsson, Hubaux,
and Buttyán [2] consists of a multi-hop uplink, i.e., the link from the mobile
station to the base station, and a single-hop downlink, i.e., the link from the
base station to the mobile station. Such a network, called an asymmetric multi-
hop cellular network, aims to reduce the energy consumption of the mobile
stations.
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When a routing protocol is based on multi-hop links, incentives must be
used to encourage cooperation between the parties — called nodes in this case.
Micro-payments are one way to treat the problem. In this paper, we analyze
the lightweight micro-payment scheme suggested by Jakobsson, Hubaux, and
Buttyán [2] at Financial Cryptography 2003, which aims to encourage coopera-
tion in asymmetric multi-hop cellular networks. In this scheme, the cost paid by
the packets’ originators covers on average the routing cost, which includes the
(probabilistic) gain of the intermediaries along the packet route. We will show
in this paper that the proposed scheme suffers from some weaknesses which
compromise its security. In Section 2, we will recap the main principles of the
analyzed micro-payment scheme. In Section 3, we will firstly describe a method
which allows two attackers in the same cell to communicate freely; we will then
suggest a lightweight patch in order to fix the scheme. In Section 4, we will
describe another threat, which enables an attacker to determine the secret keys
of the nodes. This attack thwarts the micro-payment scheme’s purpose because,
with these keys, an attacker can communicate without being charged; the owners
of the stolen keys are charged instead. Finally, we will also suggest mechanisms
to counteract this using keyed-hash functions.

2 Description of the Scheme

2.1 Entities

The micro-payment scheme suggested by Jakobsson et al. [2] consists of three
classes of entities: the users, the base stations and the operator centers. Among
the users, we distinguish between the originators of the packets, the intermedi-
aries on the path from the originator to the base station and the recipients of
the packets. We also recognize the base stations of the home network of a user,
i.e., the network where the user is registered and the base stations of the foreign
networks. There is an operator center per network, which is simultaneously an
accounting, auditing and registration center.

2.2 Principle

Before sending a packet, an originator has to send a forward request including
a reward level L to his neighbors, one after another, until one of them agrees to
forward the packet. The reward expected by the participating neighbor is related
to L. Increasing the reward level allows users with particularly low battery power
to obtain service in a neighborhood populated with low battery resources. The
authors of [2] suggested a system in which all packet originators attach a payment
token to each packet they send. Each intermediary on the packet’s path to a base
station then verifies whether this token is a winning ticket for him. This outline is
based on the probabilistic payments suggested by Rivest [4]. Intermediaries with
winning tickets can send a reward claim to their accounting center in order to be
rewarded for their work. The cost paid by the originator covers — on average —
the cost of routing and other network maintenance. Therefore, base stations
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receive two kinds of packet: reward claims that they send to the accounting
centers and packets with payment tokens. In the latter, the base stations send
the packets (without the token) to the expected destination and the tokens are
sent to the accounting centers. Packets with invalid tokens are dropped, as the
transmission cannot be charged to anybody. The packet transmission procedure
is detailed in Section 2.4 and the reward protocol is described in Section 2.5.

2.3 Setup

When a user registers for access to the home network, he is assigned an identity
u and a symmetric key Ku. The pair (u, Ku) is stored by both the user and the
user’s home network. From a routing point of view, each user u manages a list
λu = ((ui, di, Li))i where ui is the identity of a neighbor, di its path length (in
terms of hops) to the closest base station and Li its threshold for forwarding
packets as explained later. λu is increasingly sorted according to di and then Li.

2.4 Packet Transmission Protocol

Origination. The originator uo of the packet p performs the following procedure.

1. Selects the reward level L ∈ [0,maxL].
2. Computes µ = MACKuo

(p, L) where MAC is a keyed-hash function.
3. Sends the tuple P = (L, p, uo, µ) according to the Transmission procedure.

Transmission. In order to send a tuple P = (L, p, uo, µ), a user u (originator
or intermediary) performs the following procedure.

1. If the base station can be reached in a single hop then u sends P directly to
it. If not, he goes to Step 2.

2. u selects the first entry (ui, di, Li) from λu for which Li ≤ L. If such an entry
does not exist then u drops the packet.

3. u sends a forward request to ui containing the reward level L.
4. If u receives an acknowledgment from ui before a timeout δ, then he sends

P to ui. If not, he goes back to Step 2 to the next entry in λu.
5. If u is not the originator of the packet, he carries out the Reward protocol.

Acceptance by an Intermediary. When a user u′ receives a forward request
from a user u with a reward level L, he agrees to forward the packet if and only
if Lu′ ≤ L. If this is the case, he sends an acknowledgment to u and waits for
the packet. He then carries out the Transmission procedure.

Acceptance by a Base Station

1. When a tuple P = (L, p, uo, µ) is received by a base station in the originator’s
home network, the base station checks whether µ = MACKuo

(p, L) with the
stored secret key Kuo

. If the check fails the packet is dropped; if not, µ is
sent to the accounting center and p is sent to the closest base station to the
recipient user. This base station broadcasts the packet to the recipient user.
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2. When a tuple P = (L, p, uo, µ) is received by a foreign base station, the latter
forwards it to the registration center of the originator’s home network. This
center performs the tasks described in the first step of this procedure.

2.5 Reward Protocol

Recording. After a user u has forwarded a tuple P = (L, p, uo, µ), he verifies
whether f(µ,Ku) = 1 where f is a given function described in Section 2.6. If
the check succeeds, we can say that the user has a winning ticket and can claim
a reward for this ticket. In this case, he records (u1, u2, µ, L) where u1 is the
identity of the user from whom he received the packet and u2 is the identity
of the user (or base station) to whom he sent the packet. Let M be the list of
recorded reward 4-tuples.

Sending. When the user is able to reach the base station with only one hop, he
sends the claim (u,M,m) directly to it, where m = MACKu

(hash(M)). If not,
the claim is sent to the base station using the same procedure as a usual packet.
Note that the list M is encrypted with the key of the user in both cases.

An example of packet transmission and reward claims is given on Fig. 1.

If I have enough

I send them.
reward claims,

forward request

ack (I agree to forward!)

packet + token

forward request

ack (I agree to forward!)

packet + token

intermediaryoriginator
u

intermediary
u’ u’’

base station

acknowledgment of the reward claims

winning for me? winning for me?
Is this token Is this token

winning for me?
Is this token

forward request

ack (I agree to forward!)

packet (reward claims)

packet + token

Fig. 1. Example of packet forwarding

u sends a packet. u′ and then u′′ agree to forward it. The token is
winning for u′ and he has enough reward claims to send them to the
base station. u′′ agrees to forward the reward claims. The base station
acknowledges the reception of the reward claims.

2.6 Winning Function

The winning function f determines whether a ticket µ is winning for a user u. Let
Ku be the secret key of u. µ is a winning ticket for u if and only if f(µ,Ku) = 1.
Since the attack described in Section 4 exploits this function, its design should
be defined with care. Jakobsson et al. suggest that this function could be a one-
way hash function, but they say that such a function is too costly. Instead, they
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suggest choosing f such that f(µ,Ku) = 1 if and only if the Hamming distance
between µ and Ku is less than or equal to a threshold h, because this function
is very lightweight. The authors of [2] note that if the list of recorded reward
4-tuples M is not encrypted, then an attack could be possible. We describe such
an attack in Section 4.1 that results in the discovery of all secret keys if M
is not encrypted, with only η requests to an oracle, where 152 ≤ η ≤ 339 in
practice. We then show in Section 4.3 that such an attack remains possible even
when M is encrypted. In this case, the complexity of the attack depends on the
implementation and the victim’s environment, but it remains proportional to η.

2.7 Accounting and Auditing

The scheme described in [2] relies on an accounting and auditing center. We
assume for the sake of simplicity that these two entities are one and the same,
along with the registration center. We call it the operator center. Note that there
is only one operator center per network. The accounting center receives both
user claims and transmission transcripts, both forwarded by the base stations.
The accounting center periodically verifies all received user claims concerning
all the recorded reward tuples it has received from base stations. All recorded
originators are charged a usage fee according to their service contract. Moreover,
the accounting center credits all parties (except the originator and the base
station) whose identity appears in the accepted reward claim. Here, a reward
claim is said to have been accepted if it is correct, i.e., if f(µ,Ku) = 1 and
a base station has reported the packet associated with the ticket µ as having
been transmitted. The goal of the auditing center is to detect attacks in the
network using statistical methods. According to Jakobsson et al., the following
attacks can be detected using the auditing techniques (except the tampering
with claims attack which is prevented by the used of authentication methods);
selective acceptance: the user agrees to receive (with the intent to forward it)
a packet if and only if it contains a winning ticket; packet dropping : the user
agrees to receive packets but does not forward them — whether he claims credit
for winning tickets or not; ticket sniffing : a user claims credit for a packet he
intercepted, but neither agrees to forward nor actually forward it. A more serious
attack consists of users along a fake path submitting claims as if they had routed
the packet; crediting a friend : a user with a winning ticket claims to have received
the packet from (or have send it to) a user other than the true one; greedy ticket
collection: a user claims credits in excess of those specified by the protocol,
by collecting and sharing tickets with colluders; tampering with claims: a user
modifies or drops the reward claim filed by somebody else in order to increase
his profits or to remove harmful auditing information; reward level tampering :
a packet carries an exaggerated reward level along its path, but the reward
level is reduced before it is transmitted to the base station; circular routing : the
packet transits through a circular routing in order to increase the benefit to the
intermediaries; unnecessary long path routing : the packet transits through an
unnecessary long path within a particular neighborhood in order to increase the
benefit to the intermediaries since they have a valid ticket.
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Our goal in this paper is not to discuss this technique. We assume that in
the outcome, this statistical method fulfills the claims of the authors.

3 Communicating Freely in a Cell

In this section, we describe an attack which allows two misbehaving users in the
same cell to communicate freely. We will show that this attack can be put into
practice rather easily. We will then suggest a lightweight solution to counteract
the threat.

3.1 Description of the Attack

This attack consists of two users in the same cell communicating freely using fake
identities, thus their neighbors will not be rewarded for their work. Firstly we
recap that if a user u sends a message to a user u′ who is not in his neighborhood,
then the packet is sent to the base station through other users. Note that if u′

is on the path from u to the base station, then he should not keep the packet
when he receives it, but should forward it to the base station and wait for the
packet to come back from the base station (see Fig. 2a). Unfortunately, there is
no mechanism to protect against adversary wanting to take the packet on the
uplink, as represented on Fig. 2b. Such cheaters would not be punished since
they are not registered to the accounting center; the weak point being that there
is no authentication between the users on the packet path.

Note that it is rather easy for u′ to be on the packet path, by claiming a fake
distance from the base station and a fake reward level. In particular, if two hops

Power range of the base station
u

u’

Base station

(a) Well-behavior: u′ forwards the
packet to the base station and waits
for it to come back.

Power range of the base station
u

u’

Base station

(b) Misbehavior: u′ keeps the packet
when he receives it instead of forward-
ing it to the base station.

Fig. 2. u′ is the final recipient of the packet
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are enough to link u and u′, the attack will definitely succeed: u′ announces in his
neighborhood that he is able to reach the base station with only one hop even if it
is untrue. Due to this unfair competition, his neighbors will choose him to route
the packets1. Better still, the recipient attacker can be “near” the path (i.e., she
can eavesdrop the transmitted data without being on the routing path) or “near”
the base station and she can then hijack the packet without even being on the
packet routing path. Even if this latter case is not scalable, it is realistic because
the attack is easy to put into practice. For instance, if one of the attackers lives
close to a base station, she can communicate freely in her cell, hijacking the
packets which are intended to her. Punishing her is not straightforward because
her identity does not appear in the packet and she participates only passively in
the attack. Note, however, that the attack is possible on the uplink, but not on
the downlink.

3.2 Fixing the Scheme

Fixing the scheme without requiring heavy cryptographic functions — which
the authors sought to avoid — is a difficult task because the attack relies on
the fact that there is no authentication between the users. One way to fix the
scheme is to oblige the packet to pass through the base station in order to be
usable by the recipient. This can be done if each node on the uplink encrypts the
packets that it forwards — with a key also known by the base station — using
symmetric encryption which is much less expensive than asymmetric encryption.
Thus, each node can be sure that the packet will have to be decrypted by the
base station otherwise it will be rendered unusable for the recipient.

However, such a solution is quite costly. We suggest instead relaxing the se-
curity requirements. Indeed, since [2] is based on the fact that while a small
amount of fraud is acceptable, large-scale fraud has to be avoided, we suggest
reducing the number of computations by introducing a probabilistic mechanism:
each user encrypts the packet with a probability ρ. If n is the number of inter-
mediaries between the two attackers, ρ is the probability that an intermediary
encrypts the packet, and τ is the probability that the attack succeeds, then we
have: τ = (1 − ρ)n. Taking, for example n = 5, which seems a realistic value
and ρ = 1

2 , we have τ ≈ 3
100 . We may even determine a threshold at which the

attack is no longer an attractive proposition2 and consequently decrease ρ until
it reaches this threshold. This technique substantially reduces the computations
performed by the nodes. If a node decides to reduce ρ in order to save its battery
power, it will be detected by the auditing center, since its rate of forwarded en-
crypted packets over the total number of forwarded packets will be abnormally
low.

1 This misbehavior could also be used to set up a “famine” attack against a node.
2 The cheater can repeat his attack until it succeeds but if ρ is small, the attack will

no longer be attractive due to excessive battery consumption and the delay caused
by repeated attempts.
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4 Recovering Secret Keys Using Side Channel Attack

As discussed in Section 2, the goal of the secret keys stored by the nodes is
twofold. Firstly, these keys aim to encrypt the reward claims. Secondly, they are
used to charge the originator of packets: the originator’s secret key is used to
compute a MAC on the packet, which is used by the accounting center in order
to charge the owner of the key. In other words, if an attacker is able to steal a
secret key, he is able to communicate freely and the charged node is the owner of
the stolen key. We will show in this section how an attacker can carry out such
an attack. For the sake of simplicity, we will first give a theoretical overview of
the attack, showing that if an attacker can access an oracle, defined below, then
he can recover the 128 bit keys using only approximately a few hundred oracle
requests. We will then show in Section 4.3 that such an oracle is available in
practice. Finally we fix the scheme using a keyed-hash function.

4.1 Description of the Attack: Theoretical Approach

Firstly, we will recap the principle of the winning tickets. A user sends a tuple
P = (L, p, uo, µ) to a user u where µ = MACKuo

(p, L); L, p, uo, and Kuo

have already been defined in Section 2.4. u checks whether f(µ,Ku) = 1 that
is dH(µ,Ku) ≤ h where dH represents the Hamming distance, h is a given
threshold, and Ku is the secret key of u.

We assume in this theoretical approach that if the test succeeds then u sends
the claim (u1, u2, µ, L) to the accounting center3; if the test fails, u sends nothing
(see Fig. 3). Obviously, the intermediary nodes do not know Kuo

, therefore they
are not able to check whether MACKuo

(p, L) is valid. Thus, a node can be seen
as an Oracle O, such that for a request µ ∈ {0, 1}� where � is the size of the secret
key, O returns true if dH(µ,Ku) ≤ h otherwise we consider that it returns false.

nodeclaim or ⊥

(L, p, uo, µ)

Fig. 3. The node can be seen as an oracle

We will now show that some information on the secret key leaks from the oracle.
In other words, by sending some forward requests to a node and by spying on

3 In practice, a claim is not sent as soon as a winning ticket is received, but they are
recorded and then encrypted to be sent to the accounting center. We will consider
the practical aspects in Section 4.3.
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its reward claims, an attacker can determine its secret key. The attack consists
of two steps:

1. the first step aims to find a value µ̂ ∈ {0, 1}� such that dH(µ̂,Ku) = h or
h + 1;

2. the second step aims to recover Ku by sending requests to O with slight
variations of µ̂.

Let us denote O(µ) the Boolean answer from the oracle for the request µ; so
O(µ) means that the answer is true and ¬O(µ) means that the answer is false.
Let Fin := {µ ∈ {0, 1}� | dH(µ,K) = h}, Cin := {µ ∈ {0, 1}� | dH(µ,K) ≤ h},
Fout := {µ ∈ {0, 1}� | dH(µ,K) = h + 1}, and Cout := {µ ∈ {0, 1}� | dH(µ,K) ≥
h + 1}. Let µi be the i-th bit of µ and µ(i) be equal to µ except µi which is
flipped. We assume in the sequel that 0 < h < �.

Step 1. In order to solve the first step of the attack, we supply a Las Vegas
algorithm (see Alg. 1), with parameters s, t, and µ, which allows to find a value
µ on the border Fin or Fout. Its principle is the following: given a random value
µ, it puts a request to the oracle with this value and then it chooses (possibly
randomly) s bits of µ if O(µ) (resp. t bits of µ if ¬O(µ)), r1, r2, . . . , rs or t, and
sends µ(r1), µ(r2), . . . , µ(rs or t) to the oracle. We assume that the parameters s
and t are such that (s, t) �= (0, 0). Let ξ(�, h, s, t) be the probability that Alg. 1
answers. We have:

ξ(�, h, s, t) := A(�, h, s) Pr(µ ∈ Cin) + B(�, h, t) Pr(µ ∈ Cout) (1)

where

A(�, h, s) = Pr(Alg. 1 answers | µ ∈ Cin)
= Pr(Alg. 1 answers | µ ∈ Fin)

= 1 −
(

h

s

)
/

(
�

s

)
if s ≤ h and 1 otherwise,

B(�, h, t) = Pr(Alg. 1 answers | µ ∈ Cout)
= Pr(Alg. 1 answers | µ ∈ Fout)

= 1 −
(

� − h

t

)
/

(
�

t

)
if t ≤ � − h and 1 otherwise.

Lemma 1. Given a random µ ∈ {0, 1}�, the probability that µ ∈ Fin is 1
2�

(
�
h

)
and the probability that µ ∈ Fout is 1

2�

(
�

h+1

)
.

Proof. The proof is straightforward since | Fin |= (
�
h

)
, | Fout |= (

�
h+1

)
, and

| {0, 1}� |= 2�.
��

From Lemma 1, we deduce that the probability that Alg. 1 answers is

ξ(�, h, s, t) =

(
�
h

)
2�

A(�, h, s) +

(
�

h+1

)
2�

B(�, h, t). (2)



10 G. Avoine

From the Las Vegas algorithm, it is straightforward to design a Monte Carlo
algorithm as represented on Alg. 2. Let C(�, h, s, t) be the number of rounds of
Alg. 2 in order to find a value on the border; we have:

Pr(C(�, h, s, t) = c) = ξ(1 − ξ)c−1 if c > 0 and Pr(C(�, h, s, t) ≤ 0) = 0.

Alg. 1: Find-Border-Las-Vegas(s,t,µ)

send µ to the oracle O
if O(µ) then b ← s
else b ← t
end
pick b distinct random ri in [1, �]

send µ, µ(r1), µ(r2), . . . , µ(rb) to O
if O(µ) ∧ ¬

(∧i=b
i=1 O(µ(ri))

)
then return “µ is in Fin”

else

if ¬O(µ) ∧
(∧i=b

i=1 O(µ(ri))
)

then return “µ is in Fout”
else return ⊥
end

end

Alg. 2: Find-Border-Monte-Carlo(s,t)

pick a random value µ ∈ {0, 1}�

if Find-Border-Las-Vegas(s, t, µ) �= ⊥
then return µ

else
iterate Find-Border-Monte-Carlo(s,t)

end

We compute the average number of rounds of Alg. 2, C̃(�, h, s, t), in order to
complete the first step of the attack.

C̃(�, h, s, t) = lim
k→∞

k∑
c=1

c ξ(1 − ξ)c−1 =
ξ

(1 − (1 − ξ))2
=

1
ξ
. (3)

Given that each round of Alg. 2 requires either t + 1 (with probability σ) or
s + 1 (with probability 1 − σ) calls to the oracle, and that (s, t) �= (0, 0), we
compute from (2) and (3) the average number of requests to the oracle in order
to complete the first step of the attack:

2�(1 + sσ + t(1 − σ))(
�
h

)
A(�, h, s) +

(
�

h+1

)
B(�, h, t)

. (4)

Step 2. We now consider the second step of the attack, whose complexity is a
priori � according to Lemma 2.

Lemma 2. Given µ ∈ Fin (or given µ ∈ Fout), we can recover the key K with
only � requests to the oracle O.
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Proof. We assume that we have µ ∈ Fin; we know therefore that O(µ) is true.
For every i (1 ≤ i ≤ �) we ask the oracle the question O(µ(i)). We have µi = Ki

if and only if O(µ(i)) is false, that is flipping µi moves away µ from the key K.
The same track is used to prove the lemma with µ ∈ Fout. ��

Practically, the number of requests to the oracle in Step 2 can be reduced by
(a) exploiting the values already checked in the first step of the attack, (b) using
the fact that the second step can be halted as soon as the h or h+1 bits that differ
from the key have been found (the other bits can thus be found by inference).
We describe these two points in further detail below.

(a) We can re-use the requests of the last round of Alg. 1. in the second step of
the attack. We thus have s answers (resp. t answers) from the oracle if µ ∈ Cin

(resp. µ ∈ Cout). sσ + t(1 − σ) answers from the oracle are thus already known
on average.
(b) Since the second step flips the bits of µ independently, one after the other,
the process can be halted as it has found the h (resp. h + 1) bits µi s.t. µi �= Ki

or the � − h bits s.t. µi = Ki (resp. � − h − 1) when O(µ) (resp. ¬O(µ)). We
denote ζ(�, h) the average number of calls to the oracle that can be saved using
this inference method. We compute ζ(�, h) below. We notice that the process
stops at the round i if and only if

O(µ(i)) �= O(µ(i+1)) = · · · = O(µ(�)).

We have to consider the case where µ ∈ Fin and the case where µ ∈ Fout. Let
us begin with µ ∈ Fin. Let Yin := � − i. We have

Pr(Yin = 1) =
� − h

� − 1
· h

�
+

h

� − 1
· � − h

�
...

...
...

Pr(Yin = i) =
� − h

� − i
·

i−1∏
j=0
j<�

h − j

� − j
+

h

� − i
·

i−1∏
j=0
j<�

� − h − j

� − j

So, the average number of requests that can be save if µ ∈ Fin is:

Ỹin(�, h) =
∞∑
i=1
i<�

i ·
⎛
⎝� − h

� − i
·

i−1∏
j=0

h − j

� − j
+

h

� − i
·

i−1∏
j=0

� − h − j

� − j

⎞
⎠ .

If h ≈ �
2 , we can estimate Yin(�, h) using a geometric probability law with pa-

rameter 1
2 , from which we obtain

Ỹin(�, h) ≈ 2. (5)

We define Yout using the same method, and prove that Ỹout(�, h) ≈ Ỹin(�, h).
Thus, the average complexity of the second step is � − sσ − t(1 − σ) − ζ(�, h),
which can be approximated by

� − sσ − t(1 − σ) − 2. (6)
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From (4) and (6) we obtain when (s, t) �= (0, 0) the complexity of the attack4 in
terms of requests to the oracle:

2�(1 + sσ + t(1 − σ))(
�
h

)
A(�, h, s) +

(
�

h+1

)
B(�, h, t)

+ � − sσ − t(1 − σ) − 2. (7)

4.2 Interpretation

If � denotes the size of Ku in the usual binary representation, then the prob-
ability that µ is a winning ticket is σ = 1

2�

∑h
i=0

(
�
i

)
. In order to envisage an

intuitive representation of the probability that a ticket is winning, we draw on
Fig. 4 the probability according to the threshold h when � = 128. In prac-
tice, the probability of a ticket being winning should be greater than 1

100 oth-
erwise the nodes would not collaborate: this implies that h should be greater
than 51. Fig. 5 represents the corresponding complexity of the attack, given
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Fig. 4. Probability that a randomly chosen ticket is winning according to the value h

by (7), when s and t are optimal. In the range of the practical values of h, the
attack requires between 152 and 339 requests to the oracle in order to recover
a key 128 bits long! Optimal values for s and t depend on h. When h = 51, the
optimal complexity is obtained where s = 5 and t = 0.

4 Note that the algorithm which is given here aims to demonstrate that a practical
attack is possible (if we can use oracle O) but more sophisticated algorithms could
further reduce the complexity. For instance, the attack can be improved if the calls
to Alg. 1 are not independent. Indeed, consider the case where Alg. 1 is used with
t = 1 and the two requests to the oracle are µ and µ(i). If the protocol does not
answer, we clearly have O(µ) = O(µ(i)). We know, however, that if O(µ) then ¬O(µ)
where µ means that all the bits of µ have been flipped. We can now use this new
value for the next call to Alg. 1, thus decreasing the number of calls to the oracle.
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Fig. 5. Number of requests to O in order to recover the secret key of a given user

4.3 The Attack in Practice

In [2], the nodes do not send a reward claim as soon as they receive a winning
ticket. Instead, they store them in a list M which is encrypted before being
sent to the accounting center. Consequently, an attacker is no longer able to
match the values submitted to the node (requests to the oracle) with the sent
claims (answers from the oracle). In other words, she no longer knows which
of her value will generate a claim. Unfortunately, the attacker can still use an
oracle even in this case; the attack consists of disturbing the input distribution
of the node by sending beams of equal random values µ and then by analyzing
whether the output distribution is disturbed, i.e., if the list of the reward claims is
longer5 or sent more frequently than usual. Indeed, if the random value µ forming
the beam is such that f(µ,K) �= 1, then the output will not be disturbed. If
not, the number of claims will be larger (length of packets larger than usual
or packets more frequent than usual), meaning that the oracle answers true for
this value. The length of the beam depends on the node environment and on
the implementation of the protocol. Note that it is not necessary for the beam
to fill the buffer; it merely has to sufficiently disturb the input distribution in
such a way that the disturbance is detectable in the output distribution. Thus,
the remainder of the buffer can be filled with random values. In this way, other
(honest) users requesting the node to forward are helping the attacker by filling
the buffer! Consequently, depending of the environment and implementation,
the complexity of the attack remains proportional to the theoretical complexity
given in Section 4.1.

4.4 Fixing the Scheme

Since the node has a buffer to store the winning tickets, one may think that in
order to fix the scheme, it could reject random values that have already been

5 [2] says that, even if an attacker cannot distinguish which ticket generates a reward
claim, she can determine how many reward claims are sent.



14 G. Avoine

stored. Indeed, the attacker is no longer able to send beams of equal random
value. Unfortunately, it is possible to perform our attack in another way as
follows. We assume w.l.o.g that the buffer is empty at the beginning of the
attack6; for the sake of simplicity, we also assume that there are no other users
making requests to the victim during the attack7. The attacker sends the victim
the following beam:

α1, α2, . . . , αn−1, αn

where the αi are independent random values, until the node sends its list of
claims (i.e., the oracle responds). In this case, the last sent value αn is such that
f(αn,K) = 1. The attacker wants now to check the value µ and sends for that
the beam:

α1, α2, . . . , αn−1, µ

The n − 1 first values fill the buffer, except the last space. Consequently either
f(µ,K) = 1 and therefore the node will send its claims or else f(µ,K) �= 1 which
implies no answer from the node.

We feel that, whatever the patches applied, computing the Hamming distance
between the secret key and another value in order to determine the winning
tickets is not a good idea. The way that we suggest to fix the scheme consists
of modifying the protocol such that the information that an attacker can obtain
with the attack is rendered useless. Thus, we propose that a ticket is winning
for u if and only if:

dH(µ,hash(Ku)) ≤ h.

This technique has two advantages: when Ku is kept in a tamperproof memory,
only hash(Ku) remains in the vulnerable memory; the attacker is able to obtain
hash(Ku), but the only thing that the attacker can do with this information is
a greedy ticket collection attack, which is detected by the auditing center (see
Section 2.7). Note that in [2], even if the key is encrypted with a password
when the node is turned off, it has to remain permanently in clear in the non-
tamperproof memory when the node is turned on. The second advantage is the
lightweight of this solution because the hash value is computed only once instead
of being computed for every packet. If the computational capabilities of the nodes
allow a keyed-hash function to be carried out for each packet, then a more secure
way would be to decide that a ticket is winning if and only if:

dH(µ,MAChash(Ku)(µ)) ≤ h.

6 The list is empty as soon as the user sends his list of claims. Note that even if the
size of the buffer is not fixed, an attack is possible.

7 This is not actually a problem since the attacker can accept the request instead of
the victim, as explained in Section. 3.1, or if it is not possible, this disturbance will
slightly increase the complexity of the attack, but the attack will still be possible —
remember that the probability that the value of a “disturbing” requester generates
a winning ticket is very low.
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Note that again it is not the key itself which is in the vulnerable memory, but
only the hash of the key. If one of these solutions is used to fix the protocol, the
attacker can no longer use the node as an oracle.

5 Conclusion

In this paper, we have analyzed the security of the micro-payment scheme
designed for asymmetric multi-hop cellular networks proposed by Jakobsson,
Hubaux, and Buttyán. We have shown that the security of the scheme is com-
promised. Our contribution has mainly consisted of showing two attacks that
entirely break the system in the sense that all the users’ secret keys can be de-
termined, with only a few hundred trials. This implies that an attacker can thus
communicate freely, without being charged: the owners of the stolen keys are
charged instead. We have suggested some lightweight but efficient modifications
in order to repair the micro-payment scheme.
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