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Abstract.  In this paper, we present a set of simple, all-parties-authenticated
application protocol frameworks appropriate for a wide variety of financial
applications running on the Internet. Collectively, we call these frameworks
"GUMP", for Grand Unified Meta-Protocols. The driving goal of the design is
simplicity, so as to reduce dramatically the cost of engineering and deployment of
application protocols. The simplicity of GUMP follows directly from a number of
business-level premises, chief of which is that the client must digitally sign all
transactions.

One builds an application protocol from GUMP by "filling in the blanks" with custom
business data types and logic. In that sense, GUMP is a set of frameworks, templates,
or meta-protocols. The goal of this paper is not to engineer protocols, but to describe
abstractly how they might be straightforwardly engineered, concentrating on the
authentication phases common to most, if not all, financial protocols. The
applications may include home banking, purchasing, bill payment, securities
trading—any application that requires client-server mutual authentication and
integration with legacy systems.

While many of the points in this paper may seem embarrassingly simple and obvious,
that is, in fact, the point.  In the design of public-key protocols each design team
inexorably ends up inventing nearly the same primitive notions.  Since no team can
afford the time to abstract general frameworks, these protocols end up being virtual
collections of special cases. Furthermore, the written specifications, again due to time
pressure, frequently do not carefully distinguish between requirements, high-level
design, and deep details, mixing them all together in one, swirling description.  The
really hard problem then falls to the implementors whose job it becomes to translate
complex protocol design into simple working and interoperable code.

GUMP is our attempt to provide a greatly simplified abstract toolkit for the protocol



engineer. We present three application protocol prototypes—Registration,
Transaction, and Delegation—based on the pending IETF TLS (Transport-Layer
Security) Protocol, which is based on Netscape's widely deployed SSL (Secure Sockets
Layer). The GUMP Registration meta-protocol assumes the password (shared-key)
extensions to TLS as proposed to the IETF working group and documented in the
Appendix. These extensions protect a GUMP one-time shared secret that the server
uses to authenticate a certification request. The rest of the protocols make minimal
usage of cryptography beyond digital signatures. All leverage the client-
authentication feature of SSL version 3.

The contributions of this paper include:

1. Reduction of multiple financial account relationships to a single unsecret, which,
when certified along with a public key, supports authentication without secrecy.

2. A new class of Internet-safe transactions with delegation, where a member of an
access group may give permission to an agent to initiate a transaction on his
behalf.

1 Background

A growing number of financial applications are migrating to the Internet, where their
designers are attempting not only to duplicate existing functions, but also to improve
them along the way. Some applications, like home banking and bill payment, are
already commonplace in other electronic embodiments. Others are newer, like
brokerage account management and business-to-business purchasing. They all,
however, have certain requirements in common:

• Privacy
• Mutual authentication
• Integrity
• Non-repudiation
• Coexistence with legacy systems

Fortunately, at this stage of Internet evolution, public-key cryptography is becoming
ubiquitous. Virtually all web servers and browsers support secure-channel protocols
and public-key authentication, at least of the server. With the recent deployment of
SSL (Secure Sockets Layer protocol) version 3 [1], public-key authentication of the
client is now also widely available.

In this paper, we acknowledge that SSL is a de facto standard for secure HTTP
connections—there are approximately 40 million browsers and servers capable of
running it. We also assume that SSL’s base technology will continue to evolve as TLS
(Transport Layer Security) [2] within the IETF. As a natural progression,
standardized, interoperable application protocols built on TLS will follow. GUMP is a
first attempt to propose a framework for these application protocols.



Specifically, we describe:
1. Authenticating to a legacy authenticator with passwords or PINS without

exposing them over a 40-bit encryption channel.
2. A generic, fill-in-the-blanks financial application suite that leverages TLS client

authentication to accommodate financial-institution relationship certificates,
which should be distinguished from generic identity certificates. The latter have
no binding to a relationship between a client and a financial institution.

3. A non-cryptographic means for “Internet-safe” transactions with delegation,
building on the relationship certificate.

It is a primary design goal that an entire GUMP application suite be buildable with
“off-the-shelf” components. For financial applications especially, starting with well
understood, mature, standards-based secure protocols such as SSL/TLS has the
obvious advantages of:

• Interoperability and broad, cross-platform installed base
• Reduced cost to understand, analyze, and approve
• Reduced cost to design, implement, integrate, and deploy
• Built-in evolution path through the IETF’s TLS standards process
• Presumption that the cryptographic bedrock like random number

generation, key exchange, and authentication are done correctly

Our main message is that the application protocol frameworks illustrated here involve
only small, incremental changes to what is already a ubiquitous platform. For most
application purposes, high-quality cryptographic solutions are now cookbook-simple.

More formally, the following premises drive our requirements analysis and design:

1. HTTP is, by far, the most important transport for Internet financial applications
for the foreseeable future. TLS, in turn, with the proposed extensions and with
embedded signed documents can service virtually all security requirements of
financial applications, when those requirements are sufficiently simplified.
SSLv3 provides mutual authentication and moderate privacy. Embedded signed
documents provide non-repudiation for transactions and support store-and-
forward backends. The proposed extensions to TLS provide secure shared-secret
authentication to support registration.

2. Transactions are fundamentally two-party affairs. Multi-phase, multiplexed,
staged, forwarded, and nested transactions can all be designed out of two-party
elements.

3. Public-key authentication protocols are easier to implement and deploy than are
shared-secret authentication protocols. Use of shared-secret protocols should be
minimized and eliminated where possible. Nevertheless, integration with legacy
systems will require their use in some circumstances.



4. Clients should sign all transactions digitally. With signatures, a transaction
protocol has non-repudiation and freedom from managing secret authentication
data. Account numbers, PINs, passwords, and so on become worthless to an
adversary since s/he cannot use them without also creating a valid digital
signature, assuming replay protection. The adversary cannot create a valid
signature without controlling the client's private key. This premise implies that
clients must have certified signature keys.

5. Financial institutions will (or should) insist on managing their own client name
spaces. In a public-key setting, this implies that they will issue their own
certificates for client signature keys, since they need to bind their own
attributes—like account numbers—to principals they recognize.

2 Financial Applications:  Basics

Assume, as a baseline, that clients of any financial application demand a private
channel, insist on mutual authentication, and agree to sign every transaction. Of
these, authentication is the least understood. In the paper-and-ink world, possession
of a State document—presumed uncopyable—often suffices, but this is not possible in
the electronic world where anything can be copied. In the electronic world, Alice
authenticates Bob by getting him to prove current possession of one or more secrets: a
password, PIN, shared secret key, or the private half of a public-private key pair. In
financial protocols, and especially on the Internet, requirements for each of these
types often coexist within the same session. We use the term certification to mean
establishing the means of this proof so that authentication can proceed later on in a
manner mutually acceptable to client and financial institution. First, we describe a
traditional, non-electronic certification protocol as a prelude to describing GUMP's
meta-protocols.

2.1 Traditional certification protocol

A typical client consumes a number of products and services provided by a financial
institution. The client may have demand-deposit accounts, mortgages, unsecured
loans, annuities, insurance accounts, credit cards, debit cards, check cards, ATM
cards, brokerage accounts, and so on at a single institution. The institution and client
agree on an account number for each distinguishable product or service, but the set of
account numbers are bound to a single client identity—indeed, they constitute the
client identity from the point of view of the institution. No mere name and address,
etc, would suffice without the account numbers. This definition of identity benefits
both the client and the institution. The client will have freedom of movement among
the accounts and the institution can track the client's activities for legal and business
purposes.

The traditional certification protocol goes roughly as follows:



1. MEET: The client and an official of the financial institution meet face-to-face.
2. IDENTIFY: The client provides satisfactory proof of identity—at least as

defined by the State—to the official of the institution. This proof may be in the
form of a birth certificate, driver's license, employer picture ID, and so on.

3. PRESENT: The official copies some of the identity information plus some
information of his own to a paper signature card and presents the card to the
client for signature (we call the card a preimage at the moment, since it is not
signed, in anticipation of the digital analog of this protocol). The information on
the card is a matter of institution policy, but must contain a master account
number or some other kind of primary index key into the institution’s client
database.

4. RETURN: The client signs the paper signature card with ink and gives it back to
the official. Perhaps the client signs one card for each account. More
interestingly from our perspective, the client may sign a single card that contains
all the client's account numbers.

5. FILE: The official of the institution countersigns the card and files it, making it
a signature-card-on-file (SOF)

The following figure illustrates this protocol

Traditional, paper-based, financial certification protocol

Official of the

Certifying

Financial
Institution

Client

IDENTIFY : driver's licence, birth certificate,

employee ID, etc.

MEET : Face-to-Face

PRESENT : preimage of signature file card, with

policy-dependent account #'s, index keys and IDs

RETURN : signed file card

FILE : countersigned file card
Permanent

Storage



After this certification protocol, the financial institution accepts transaction orders
only when accompanied by a fresh paper-and-ink client signature that an official of
the institution can compare against the SOF. The institution uses one SOF for a
whole collection of accounts, that is, for a whole collection of products and services.
The SOF becomes the institution’s permanent record of evidence of prior
authentication.

We also use the term ‘authentication’ to refer to the later comparison of signatures on
transaction orders against the SOF, noting that authentication, in this latter usage, is
authentication of the transaction, not of the client him- or herself.

The security of the traditional protocols follows from the following assumptions:
1. Paper-and-ink signatures are hard to forge. Only professional criminals can even

attempt forgery. Casually counterfeit transactions are not feasible.
2. The official of the financial institution can be trained to detect forgeries.
3. The client is not liable for signatures obtained ‘at gun-point’, and so on. Business

case law applies myriad other restrictions and remedies to signed transactions.
4. No transactions are accepted without a signature and a signature check.

The most important is the last: it means that account numbers are worthless to an
adversary who cannot forge a signature.

2.2 Foundations for GUMP

This observation was the foundation for GUMP. We asked ourselves whether we
could avoid the cryptographic, infrastructural, and engineering complexities that
follow from attempting to hide numbers from adversaries on the Internet. The answer
is only if the numbers have no value. For example, to a first approximation, the only
reason a credit card number is valuable to an adversary is that s/he may use the
number to buy things without a signature via MOTO (Mail-Order Telephone-Order).
If a digital signature and signature check were required on every transaction, then the
card number alone would have no value. Now, to a second approximation, there are
other good reasons to keep a credit card number secret against other protocol hazards.
Forgery might be attempted, or the bank might never check the signature, might not
require the merchant to pass signed draft slips back for signature check, and so on.
However, none of these hazards exist with public-key cryptography. It is
mathematically infeasible for anyone to forge a digital signature, and signatures may
be cheaply checked by anyone, not just the financial institution

The latter point is another fundamental difference between paper-and-ink signatures
and digital signatures. The financial institution must keep the SOF secure against
substitution or disclosure, so the institution becomes a central bottleneck for signature
checking. Since it is not feasible to check every transaction at the institution, various
systems have various ways of bypassing the check. A credit card, for example, has a
tamper-resistant signature block on the back, and merchants are supposed to check it



against the signed draft. Essentially, the cardholder's bank delegates the signature
check to the merchant in this case, at the risk of the back-of-card being modified by
clever hackers. However, in the case of public-key digital signatures, anyone who
trusts a given CA root key can perform foolproof verification of any signature. These
principles underly the design of the Visa/MasterCard Secure Electronic Transaction
(SET) protocol [5] which is specifically tailored for encrypted credit card transactions
between a consumer, an untrusted merchant, and a trusted gateway.  GUMP, unlike
SET, assumes a generic, two-party transaction where no valuable account number is
required and authentication rather than encryption insures integrity.  While not
appropriate for credit card transactions where the consumer-merchant relationship is
spontaneous and transient, GUMP could apply to the large class of financial
transactions that depend on a trusted and on-going relationship; for example, between
a customer and his bank.

In fact, the following GUMP protocol examples are intended to be electronic
equivalents of common bank practices.  The only twist is the use of a unique, but not
secret number, in every signed transaction.  

3 GUMP Registration Meta Protocol

The Internet analog of a SOF is a certified public signature key (CPSK). The GUMP
Registration Meta-protocol (GRMP) is a framework for designing and implementing
a financial institution's certification policies that result in a client's CPSK, packaged
as a GUMP relationship certificate (GRC). The GRC, of course, is public
information that can be sent with transaction packets, stored in online directories,
cached on distributed machines, and so on.

The GRMP has the following steps:

1. APPLY: The client applies for a service either in person on through the financial
institution's web site.

2. IDENTIFY: The client provides satisfactory proof of identity to the official of the
institution. GUMP allows maximal freedom for policy choices by the institution:
2.1. In the case of face-to-face certification, identification might be showing

State documents, as in the traditional protocol.
2.2. In the case of electronic identification, the institution might require a

signature on a challenge with a verification key from a generic identity
certificate, such as one from Verisign or the US Postal Service.

3. KEY (optional step): The official of the institution gives the client a one-time
secret (OTS) out-of-band, for example, in a PIN mailer. We propose, here, that
this secret be the hash of all the account numbers that will be serviced by the
GRC. This proposal allows the institution and client to check one another: each
can independently compute the hash. However, the exact form of the OTS is not
very important. From the protocol standpoint, it must simply be unique to the
institution issuing it. From the system design standpoint, it will most likely be an



index key that the institution will use to lookup client information. This step can
be skipped, as a matter of policy, if the client is separately authenticated as in
2.2; the institution may simply issue the OTS in the GRC in step 5.

4. REQUEST: This is the first step that is always online. The client digitally signs
and submits a PKCS#10 (or other suitable form of a…) Request for Certification
(RFCert), which contains a proposed public signature key, and securely proves
possession of the OTS via the TLS shared-key authentication protocol in the
Appendix. The digital signature, at this point, proves only that the client controls
the as-yet-uncertified private signature key.

5. ISSUE: The institution digitally signs and sends back a GRC binding the client’s
public signature key to the OTS. From this point on, the OTS is no longer secret.
It is simply a public attribute, certified by the institution, of the client's public
signature key. This is the reason we call it the unsecret. An adversary cannot use
the OTS without also taking control of the client’s private signature key, which
we make as difficult as possible.

The following diagram illustrates this meta-protocol:

GUMP Registration Meta-Protocol

Official of the
Certifying
Financial

Institution
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IDENTIFY : possible paper IDs or
signed challenge plus generic identity certificate
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KEY  (optional): one-time-secret (OTS) sent
out of band, e.g., PIN mailer or phone call .

REQUEST : signed Certificate Request, plus OTS
authenticated by TLS shared-key auth protocol.

ISSUE : Gump Relationship Certificate (GRC): signed
client public key and OTS

One-Time Secret (OTS) is not
secret after this point

because client signatures are
required on all transactions

that use the Gump
Relationship Certificate (GRC)



The GRC is the analog of the SOF—Signature-card-on-file. The institution accepts
no transactions without a digital signature, which an official of the institution (or his
computer programs) can compare against the SOF.

We note, with emphasis, that step 3 is the only part of the entire proposal that
requires modification of standard, off-the-shelf technology. The proposed
modification of TLS [3] can be used not only for the GUMP unsecret, but much more
broadly for passwords, PINs and other secrets. These modifications avoid sending
passwords, PINs, or other secret authentication data over weakly encrypted channels,
like those approved for export from the US. Instead, they pass a quantity that any
party possessing the shared secret can recompute, but that no one else can. The
quantity is essentially the hash of the shared secret, though other data linking the
quantity to the current session and to established names of both parties is included in
the hash. Details may be found in the appendix

3.1 Mutual Authentication without Secrecy

One innovation of this paper is the unsecret number, which ties the public key in the
GRC to all client relationships with the financial institution. The number is useless to
an adversary who does not control the client’s private key. We may now see why
encryption of this number is not needed so long as all transactions are signed. Before
certification, the client satisfies the institution’s certification policy. After
certification, the client satisfies GUMP's authentication policy, which is simply to
sign, digitally, a transaction instrument containing a freshness challenge, proving
current control of the private signature key corresponding to the public key in the
GRC. This public key is bound to the unsecret by the institution's signature on the
relationship certificate.

The cryptographically savvy have already recognized that the pubic key alone is a
perfectly good “unsecret”. The whole exercise of hashing account numbers is to give
the client and the institution a non-random number they can independently
control,and to reduce the unsecret to 20 bytes or less. For example, the unsecret might
be a user or group denoting access permissions in an ACL. More likely, it will be a
primary database key, so some thousand-odd bits of composite bignum would not be
helpful in this regard. To be fair, the substitution of any agreed-upon datum would
make an equally good unsecret. It is simply a local name.

3.2 The Identity and Relationship Certificates

SSLv3.0 includes both server and client authentication. A browser client routinely
authenticates a server as a part of the Server Hello. With version 3.0, the server may
require the client to sign a challenge and present a certified public signature key that
verifies the signature on the challenge. Typically, to use this feature, the client gets an
identity certificate from a commercial or government certificate authority, such as



Verisign or the Postal Service, and stores it someplace convenient, like a browser
database or a directory service. The financial institution certification policy (in steps 2
and 4 above) may accept the identity certificate in place of traditional, show-your-
face-and-papers identification. So, why still issue a relationship certificate binding the
client’s public signature key to the unsecret? The answer is for local control of
names. If the institution were to rely on someone else's identification and naming
conventions to conduct its business or index its databases, it would have to internalize
or map those naming conventions to its own legacy systems. If, however, the
institution issues its own certificates, then it can bind the client's public key to the
most convenient identifier. The unsecret does not need to be globally unique, it does
not need to be checked by anyone else, it does not have any external requirements
whatsoever. It is simply the institution's own local "name" for the client.

The GUMP relationship certificate then, is a proxy for a business relationship that
can be resolved to a single person and any number of accounts.

4 GUMP Transaction Meta Protocol

Transactions in GUMP are incredibly simple and freely configurable. A client may
conduct a GUMP transaction with any entity that trusts the root key of the GRC
signature chain. Let us call that entity the merchant, just for the sake of discussion. It
may be the institution itself or it may be any number of delegates or associates who
trust a signature verification chain that includes the GRC and its signature keys.

The client and the merchant may conduct arbitrary negotiations prior to the client's
signing a transaction instrument (TI). We advocate that the client authenticate the
merchant via SSL/TLS. We further advocate that the merchant authenticate the client
via SSL/TLS client authentication. In the latter, the merchant may request the GRC
rather than the prosaic identity certificate, because the financial institution either
issued or understands the unsecret number. However, GUMP does not require
SSL/TLS client auth nor that client auth, if used, employ the GRC rather than the
identity cert.

When negotiations are closed and the client is ready to commit the transaction,
GUMP requires the client to construct an instrument signed with the (private half of
the) client key, and to embed the signed instrument with a valid GRC that the
merchant trusts into the SSL/TLS stream. Embedded S/MIME might be a suitable
format for such an embedded capsule. However, encryption should be avoided as it is
not needed for GUMP, it is already provided by SSL/TLS, and embedded encryption
creates ITAR product export clearance problems. The reason for the embedded,
signed instrument is that TLS mutual authentication does not provide the merchant
with a permanent, non-repudiable record of client commitment.

GUMP requires only that the instrument be replay proof, meaning that it contain a
secure timestamp, a unique transaction identifier, or a large (128-bit, at least) random



freshness challenge that the client signs. It is a good idea for a transaction instrument
to contain all three replay protections. Otherwise, structure and content of the
instrument are free.

5 GUMP Delegation Protocol:  Memberships

Again, Secure Electronic Transactions—SET—the Visa-Mastercard standard [5],
addresses the problem of spontaneous credit card transactions on the Internet. The
model assumes that the buyer and seller prefer to remain anonymous and that a
virtual session between the client and the merchant’s bank is necessary to protect the
credit card number from malicious misuse by the merchant.

While this degree of caution is appropriate for the Internet in general and especially
for transactions where the card number alone can be used in fraudulent, unsigned, no-
card-present transactions, there exists a different category of transactions where the
parties trust each other and, to some extent, transact frequently. Examples include
business-to-business purchasing, frequent flier programs, and even sports club
memberships. The common thread is that there is a contract—“of sorts” or formal—
between the partners that explicitly lays out the rules, which are almost always:

Alice (the member) authorizes Bob (the club) to do
something on a case-by-case basis

A trivial example might be that Alice authorizes Bob to send her company the goods
described on her purchase order—but only upon Bob’s presenting her with a detailed
invoice. The purchase is completed only when Alice signs and returns the invoice,
acknowledging the terms of sale and completing the commitment to buy.

The relationship between Alice and Bob has the following characteristics:
1. They trust each other, or, at least they did once when they created their shared

unsecret, meaning they have already shared a secret.
2. Because Bob already possesses Alice’s secret, he can use it on her behalf without

having her share it again; but,
3. The contract between them requires that Bob get Alice’s (signed!) permission

each time.

The essence of the matter is that Bob can negotiate for Alice, but only Alice can
commit. So, Bob may have a GUMP Delegation Certificate (GDC) that binds his
public key to Alice's unsecret, and Bob may use the GDC to establish mutually
authenticated TLS negotiation sessions with Alice and others. But only Alice can sign
a transaction instrument with her GRC.

The GDC may simply be a certificate issued by Alice for Bob, containing her



unsecret, his public key, and verifiable with her GRC. We see that expediency
mitigates toward every client being a CA of sorts. This observation has been made by
the authors of SDSI [4]. Indeed, we speculate that GUMP—in pure meta form
(especially if the rest of Lisp or Scheme were added to SDSI) or in some concrete
application—can be very easily implemented on top of SDSI.

In terms of the protocol, requesting and granting permission adds another step – but
also has the advantage of transparently adding a third party to the transaction. The
underlying concept is that this trust need not be transitive:

Alice authorizes Bob (whom she trusts) to use her unsecret to negotiate a transaction
with Chuck (whom only Bob knows and trusts). Each time, Bob must present the
permission and Alice must sign it.

6 Design and deployment :  advantages of simplicity

High on the list of advantages of standards-based financial protocols is quick and
painless deployment. Channel security (TLS) is quickly becoming requisite for
business on the Internet, and the only change required to use all of the GUMP
protocols  is shared-key authentication—and this is already destined to become a part
of the TLS standard.  Better yet, secure-channel protocols and APIs to use them are
being bundled with platform components like operating systems and browsers. In
most cases, writing security protocols “from scratch” has no payback.

The rest of the problem then is design, and unfortunately, that’s where most of the
really serious mistakes are made.

Encryption vs. authentication: Confusion of these two operations tracks
cryptography’s relatively recent emergence as the darling of the business press.
Encrypting is chic, but in many cases not at all necessary to accomplish the security
objective. A combination of  Hash functions and digital signatures can provide access
control, message authentication, and data integrity --- all without secrecy --- as
illustrated in this paper. Encryption should be avoided when not necessary, because it
makes governments nervous.

Trust hierarchies:  We advocate only two at most—the issuers of GUMP
Relationship Certificates and the issuers of the identity certificates. These, in turn,
should be either self-signed or two-deep. Users can easily install trusted keys of
certificate authorities in their browsers, and with GUMP, multiple accounts with each
entity are represented by a single relationship certificate containing the unsecret. The
advantage of “flat” rather than “fat” trust trees is obvious:  people - not computers -
have to maintain them.

Key Management and security policy:  Central to the success of any security design
is how well keys are  managed:  generated, stored, refreshed and replaced upon loss



or compromise.  While stringency of individual policies may vary based on
requirements, their design and test is no less important than that of the software
itself.  In practice, security systems most often fail from the simple combination of
carelessness or inadequate disaster planning.  By contrast, the cryptography is the
simple part.

Finally, the original objective of this paper was to stimulate good design and low-cost
deployment of financial security solutions by supplying frameworks based on “off-the-
shelf” standards. While we anticipate creative extensions, permutations, and of
course, corrections as the GUMP set is actually implemented, our objective is
achieved if a single GUMP --- either meta-protocol or concept --- finds its way into
real financial applications.

7 Acknowledgements

Thanks to Daniel Simon, Yacov Yacobi, Rick Johnson, Mike Daly and Dipan Dewan
for their valuable contributions to our work.

References

[1] A.O. Freier, P. Karlton, and P.C. Kocher,
The SSL Protocol:  Version 3.0, Mar. 1996.
Internet Draft, ftp://ietf.cnri.reston.va.us/
internet-drafts/draft-freier-ssl-version3-%01.txt.

[2] A.O. Freier, P. Karlton, and P.C. Kocher,
T Dierks. The TLS Protocol Version 1.0, Nov 1996.
Internet Draft, ftp: ://ietf.cnri.reston.va.us/
internet drafts/draft-freier--tls-protocol-00.txt.

[3] D Simon, Addition of Shared Key Authentication
 to Transport Layer Security (TLS),Nov 1996.
Internet Draft, ftp: ://ietf.cnri.reston.va.us/
internet drafts/draft-simon-tls-passauth-00.txt

[4] Rivest, R. L. and Lampson, B.,
 "SDSI—A Simple Distributed Security Infrastructure"
http://theory.lcs.mit.edu/~rivest/sdsi10.html

[5] Visa and MasterCard, Secure Electronic Transactions
Protocol (SET), August 1996,  http://www.visa.com/
cgi-bin/vee/sf/set/intro.html?2+0, www.mastercard.com/set



APPENDIX

Shared Key Authentication for the TLS Protocol

1.  Introduction

This document presents a shared-key authentication
mechanism for the TLS protocol.  It is intended to allow
TLS clients to authenticate using a secret key (such as a
password) shared with either the server or a third-party
authentication service.  The security of the secret
authentication key is augmented by its integration into
the normal SSL/TLS server authentication/key exchange
mechanism.

2.  Why Shared Key Authentication?

Recent transport-layer security protocols for the
Internet, such as SSL versions 2.0 and 3.0 [1, 2] and PCT
version 1 [3], have effected challenge-response
authentication using strictly public-key (asymmetric)
cryptographic methods, with no use of out-of-band shared
secrets.  This choice has both benefits and drawbacks.
The primary benefit is improved security:  an asymmetric
private key used for authentication is only stored in one
location, and the out-of-band identification necessary for
public key certification need only be reliable, not
secret(as an out-of-band shared key exchange must be).  In
addition, the difficult task of out-of-band shared-key
exchange in shared-key authentication systems often leads
implementers to resort to human-friendly shared keys
(manually typed passwords, for instance), which may be
vulnerable to discovery by brute force search or "social
engineering".

However, shared-key authentication has certain advantages
as well. These are, chiefly:

- Portability:  Precisely because shared keys are often
human-remembered passwords or passphrases, they can be
transported from (trusted) machine to (trusted) machine
with ease--unlike asymmetric private keys, which must be
transported using some physical medium, such as a diskette
or "smart card", to be available for use on any machine.

- Backward Compatibility:  Shared-key authentication is in
very wide use today, and the cost of conversion to its
public-key counterpart may not be worth the extra
security, to some installations.

- Established Practice:  Shared-key authentication has
been in use for quite a while, and a valuable body of



tools, techniques and expertise has grown up around it.
In contrast, public-key authentication is very new, its
associated tools and methods are either untested or non-
existent, and experience with possible implementation or
operation pitfalls simply doesn't exist.

These reasons are particularly relevant when individual
human users of a service are being authenticated over the
Internet, and as a result, virtually all authentication of
(human) clients of such services is currently performed
using shared passwords.  Typically, servers implementing
one of the aforementioned transport-layer security
protocols, and needing client authentication, simply
accept secure (i.e., encrypted and server-authenticated)
connections from each client, who then provides a password
(or engages in a challenge-response authentication
protocol based on a password) over the secure connection
to authenticate to the server.

Unfortunately, such "secure" connections are often not
secure enough to protect passwords, because of the various
international legal restrictions that have been placed on
the use of encryption.  Obviously, secret keys such as
passwords should not be sent over weakly encrypted
connections.  In fact, even a challenge-response protocol
which never reveals the password is vulnerable, if a
poorly chosen, guessable password is used; an attacker can
obtain the (weakly protected) transcript of the challenge-
response protocol, then attempt to guess the password,
verifying each guess against the transcript.

However, it is possible to protect even badly-chosen
passwords against such attacks by incorporating shared-key
authentication into the transport-layer security protocol
itself.  These protocols already involve the exchange of
long keys for message authentication, and those same keys
can be used (without the legal restraints associated with
encryption) to provide very strong protection for shared-
key-based challenge-response authentications, provided
that the mechanism used cannot be diverted for use as a
strong encryption method.  This latter requirement makes
it essential that the shared-key-based authentication
occur at the protocol level, rather than above it (as is
normally the case today), so that the implementation can
carefully control use of the long authentication key.

3.  Protocol Additions

Starting from SSL version 3.0 notation and formats, the
following three new HandshakeTypes are added, and included
in the Handshake message definition:

shared_keys(30),shared_key_request(31),
shared_key_verify(32)



A new CipherSuite is also included, to allow the client to
signal support for shared-key authentication to the
server:

TLS_AUTH_SHARED_KEY = {x01, x01};

The client's inclusion of this CipherSuite is independent
of other listed CipherSuites, and simply indicates to the
server the client's support for shared-key authentication.

3.1  SharedKeys message

The SharedKeys message has the following structure:

struct {
     DistinguishedName auth_services_client<1..65535>;
} SharedKeys;

This optional message may be sent by the client
immediately following the ClientHello message; in fact, if
sent, it is actually enclosed within the ClientHello
message, immediately following the last defined field of
the ClientHello message.  (For forward compatibility
reasons, the SSL 3.0 ClientHello message is allowed to
contain data beyond its defined fields, and because there
is no ClientHelloDone message, the server cannot know that
an extra message follows the ClientHello unless it is
actually included in the ClientHello message itself.  A
server that does not support shared-key authentication
will simply ignore the extra data in the ClientHello
message.)  Although enclosed within the ClientHello, the
SharedKeys message retains the normal structure and
headers of a Handshake message.

The SharedKeys message contains a list of distinguished
names of authentication services to which the client is
willing to authenticate. This list need not be exhaustive;
if the server cannot find an acceptable authentication
service from the list in the SharedKeys message, then the
server is free to reply with a list of acceptable services
in a subsequent SharedKeyRequest message.

In cases where pass-through authentication is used, this
message allows clients to be able to notify servers in
advance of one or more authentication services sharing a
key with the client, so that the server need only fetch
(or use up) a challenge from a single service for that
client.  This message may also be useful in non-pass-
through situations; for example, the client may share
several keys with the server, associated with identities
on different systems (corresponding to different
"authentication services" residing on the same server).
If a server receives a SharedKeys message, then any



subsequent SharedKeyRequest message can contain a single
authentication service selected from the client's list.

Note that sending a SharedKeys message does not in itself
normally reveal significant information about the client's
as-yet-unspecified identity or identities.  However, if
information about the set of authentication services
supported by a particular client is at all sensitive, then
the client should not send this message.

3.2  SharedKeyRequest message

The SharedKeyRequest message has the following structure:

struct {
         DistinguishedName auth_service_name;
         opaque display_string<0..65535>;
         opaque challenge<0..255>;
} AuthService;

struct {
     AuthService auth_services_server<1..65535>;
} SharedKeyRequest;

This optional message may be sent immediately following
the server's first set of consecutive messsages, which
includes the ServerHello and (possibly) the Certificate,
CertificateRequest and ServerKeyExchange messages, but
before the ServerHelloDone message.  The
auth_services_server field contains a list of
distinguished names of shared-key authentication services
by which the client can authenticate.  The challenge field
accompanying each authentication service name contains an
optional extra authentication challenge, in case the
server needs to obtain one from an authentication service
for pass-through authentication.  If none is required,
then it would simply be an empty (zero-length) field.
Similarly, the display_string field may contain
information to be used (displayed to the user, for
example) during authentication, if needed; its
interpretation is left to the implementation.

3.3  SharedKeyVerify message

The SharedKeyVerify message is sent in response to a
SharedKeyRequest message from the server, at the same
point at which a CertificateVerify message would be sent
in response to a CertificateRequest message.  (If both a
CertificateRequest and a SharedKeyRequest are sent by the
server, then the client may respond with either a
CertificateVerify message or a SharedKeyVerify message.
Only one of the two messages is ever sent in the same



handshake, however.)  The SharedKeyVerify message has the
following structure:

struct {
     AuthService auth_service;
     opaque identity<1..65535>;
     opaque shared_key_response<1..255>;
} SharedKeyVerify;

The value of auth_service must be identical to one of the
AuthService values on the list in
SharedKeyRequest.auth_services_server.  If the client does
not share a key with any of the authentication services
listed in the SharedKeyRequest message (and cannot supply
a certificate matching the requirements specified in the
accompanying CertificateRequest message, if one was sent),
then the client returns a "no certificate" alert message
(in its normal place in the protocol).

The format of the identity field is left to the
implementation, and must be inferable from the
accompanying value of auth_service.  The value of
shared_key_response is defined as

SharedKeyVerify.shared_key_response
  hash (auth_write_secret + pad_2 +
    hash (auth_write_secret + pad_1
          + hash (handshake_messages)
          + SharedKeyVerify.auth_service.auth_service_name
          + SharedKeyVerify.auth_service.display_string
          + SharedKeyVerify.auth_service.challenge
          + SharedKeyVerify.identity + shared_key) )

Here "+" denotes concatenation.  The hash function used
(hash) is taken from the pending cipher spec.  The
client_auth_write_secret and server_auth_write_secret
values are obtained by extending the key_block by
CipherSpec.hash_size bytes beyond the server_write_key (or
the server_write_IV, if it is derived from key_block as
well), and using this extended portion as the
client_auth_write_secret value.  (Only the
client_auth_write_secret is used, since only the client
ever sends a SharedKeyVerify message.)  The value of
handshake_messages is the concatenation of all handshake
messages from the first one sent up to (but not including)
the shared_key_verify message.  The pad_1 and pad_2 values
correspond to the ones used for MAC computation in the
application_data message.  The fields from the
SharedKeyVerify message are input with their length
prefixes included.

4.  Normal Authentication

A shared-key-based client authentication may proceed as



follows:  the client includes the TLS_AUTH_SHARED_KEY
CipherSuite in its list of CipherSuites in its ClientHello
message.  It also may or may not send a SharedKeys message
along with the ClientHello message, listing the
authentication services with which the client shared a key
for authentication purposes.  In any event, the server
sends a SharedKeyRequest handshake message following the
ServerHello and accompanying messages containing a list of
names of one or more authentication services; if a
SharedKeys message was sent, then this list will contain a
single choice from the client's SharedKeys message.  The
client, on receiving the SharedKeyRequest message, selects
an authentication service from the server's list (if more
than one is offered) and constructs the appropriate
authentication response as described above, sending it
back, along with its identity and choice of authentication
service, in a SharedKeyVerify handshake message.  The
server itself also constructs the correct authentication
response using the known shared key, and checks it against
the one provided by the client.  The authentication is
successful if the two match exactly. Note that if the
shared key is password-based, then it would typically be
derived from the password using a one-way cryptographic
hash function, rather than being the password itself, so
that the original password need not be remembered by
anyone but the client.

5.  Pass-through Authentication

In some circumstances, it is preferable for shared keys to
be stored in one place (a central, well-protected site,
for instance) while servers that actually communicate with
clients are elsewhere (possibly widely distributed, but
maintaining secure connections to the central shared-key
server).  One of the advantages of the shared-key
authentication method proposed here is that it allows
"pass-through" authentication by a third party, if the
server accepting the public-key key exchange and the
server sharing the key with the client happen to be
different.  (The use of a separately derived
authentication key in the response computation makes this
possible.)

Pass-through authentication might work as follows:  The
server would either collect random challenges in advance
from its authentication services, or request them as
needed.  (If the client sends a SharedKeys message, then
the server can select an authentication service from the
client's list, and obtain a challenge from that service
alone.)  Assuming that the client indicates support for
shared-key authentication by including the
TLS_AUTH_SHARED_KEY CipherSuite in its list, the server
would then send a list of one or more authentication
services and associated challenges in a SharedKeyRequest



message.  The client would then select an authentication
service (if more than one is offered), compute the correct
authentication response using the above proposed formula,
and send it to the server in a SharedKeyVerify message.

The server, on receiving a response from a client, would
pass it through to the authentication service, along with
the values necessary to recalculate it:  the
client_auth_write_key, the hash of all the handshake
messages and the identity field from the certificate
verify message.  The authentication service would then use
the values provided, along with the secret key it shares
with the client and the challenge it supplied, to
reconstruct the correct value of the response.  If this
value exactly matches the one provided by the server, then
the authentication would succeed; otherwise it would fail.
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