GUMP
Grand Unified Meta-Protocols
Recipesfor Simple, Standards-based Financial

Cryptography

Barbara Fox
Brian Beckman
Appendix by Dan Simon

Microsoft Corporation
February 1997

Abstract. In this paper, we presenta set of simple, all-parties-authenticated
application protocol frameworks appropriate for a wide variety of financial
applications running on the Internet. Collectively, we call these frameworks
"GUMP", for Grand Unified Meta-Protocols.The driving goal of the designis
simplicity, so asto reducedramaticallythe cost of engineeringand deploymentof
applicationprotocols. The simplicity of GUMP follows directly from a number of
business-levepbremises,chief of which is that the client must digitally sign all
transactions.

One builds an application protocol from GUMP by "fillimgthe blanks"with custom
businesslatatypesandlogic. In thatsenseGUMP is a setof frameworkstemplates,
or meta-protocolsThe goal of this paperis not to engineerprotocols,but to describe
abstractly how they might be straightforwardly engineeredconcentratingon the
authentication phasescommon to most, if not all, financial protocols. The
applications may include home banking, purchasing, bill payment, securities
trading—any application that requires client-server mutual authentication and
integration with legacy systems.

While many ofthe pointsin this papermay seemembarrassinglgimpleandobvious,
thatis, in fact, the point. In the designof public-key protocolseachdesignteam
inexorablyendsup inventing nearlythe sameprimitive notions. Sinceno teamcan
afford the time to abstractgeneralframeworks,theseprotocolsend up being virtual

collectionsof specialcasesFurthermorethewritten specificationsagaindueto time

pressure frequently do not carefully distinguish betweenrequirements high-level
design,anddeepdetails,mixing themall togetherin one,swirling description. The
really hard problemthenfalls to the implementoravhosejob it becomego translate
complex protocol design into simple working and interoperable code.

GUMP is our attemptto provide a greatly simplified abstractoolkit for the protocol

engineer. We present three application protocol prototypes—Registration

Transaction and Delegation—basedon the pending IETF TLS (Transport-Layer
Security) Protocol, which is based on Netscape's widely deployed SSL (Seclsts
Layer). The GUMP Registrationmeta-protocolassumeghe password(shared-key)
extensiongo TLS as proposedto the IETF working group and documentedn the

Appendix. Theseextensiongrotecta GUMP one-timesharedsecretthat the server
usesto authenticate certification request.The rest of the protocolsmake minimal

usage of cryptography beyond digital signatures. All leverage the client-

authentication feature of SSL version 3.

The contributions of this paper include:

1. Reduction oimultiple financialaccountrelationshipdo a singleunsecretwhich,

when certified along with a public key, supports authentication without secrecy.

2. A newclassof Internet-saf@ransactionsvith delegation wherea memberof an
accessgroup may give permissionto an agentto initiate a transactionon his
behalf.

1 Background

A growing numbeiof financialapplicationsaremigratingto the Internet,wheretheir
designersare attemptingnot only to duplicateexistingfunctions,but alsoto improve
them along the way. Someapplications,like home banking and bill payment,are
already commonplacein other electronic embodiments.Others are newer, like
brokerage account managementand business-to-businespurchasing. They all,
however, have certain requirements in common:

* Privacy
e Mutual authentication
* Integrity

* Non-repudiation
» Coexistence with legacy systems

Fortunately,at this stageof Internetevolution, public-key cryptographyis becoming
ubiquitous.Virtually all web serversand browserssupportsecure-channgtrotocols
and public-key authenticationat leastof the server.With the recentdeploymentof
SSL (SecureSocketslayer protocol) version3 [1], public-key authenticatiorof the
client is now also widely available.

In this paper,we acknowledgethat SSL is a de facto standardfor secureHTTP

connections—therare approximately40 million browsersand serverscapableof

running it. We also assume that SSL’s base technology will continue to esdii&

(Transport Layer Security) [2] within the IETF. As a natural progression,
standardized, interoperable application protocols built on TLS will fol&WMP is a

first attempt to propose a framework for these application protocols.

Specifically, we describe:

1. Authenticatingto a legacy authenticatorwith passwordsor PINS without
exposing them over a 40-bit encryption channel.

2. A generic/fill-in-the-blanksfinancial applicationsuite that leveragesI'LS client
authenticationto accommodatefinancial-institution relationship certificates
which shouldbe distinguishedrom genericidentity certificates The latter have
no binding to a relationship between a client and a financial institution.

3. A non-cryptographicmeansfor “Internet-safe” transactionswith delegation
building on the relationship certificate.

It is a primary designgoal that an entire GUMP applicationsuite be buildablewith
“off-the-shelf” componentsFor financial applicationsespecially,starting with well
understood,mature, standards-basedecure protocols such as SSL/TLS has the
obvious advantages of:

» Interoperability and broad, cross-platform installed base

* Reduced cost to understand, analyze, and approve

* Reduced cost to design, implement, integrate, and deploy

» Built-in evolution path through the IETF’s TLS standards process

* Presumptionthat the cryptographic bedrock like random number
generation, key exchange, and authentication are done correctly

Our main message is that the application protéeoheworksillustratedhereinvolve
only small, incrementalchangedo what is alreadya ubiquitousplatform. For most

application purposes, high-quality cryptographic solutions are now cookbook-simple.

More formally, the following premises drive our requirements analysis and design:

1. HTTP s, by far, the mostimportanttransportfor Internetfinancial applications
for the foreseeablduture. TLS, in turn, with the proposedextensionsand with
embeddedsigned documentscan servicevirtually all security requirementsof
financial applications, when those requirementsare sufficiently simplified.
SSLv3providesmutual authenticatiorand moderateprivacy. Embeddedsigned
documentsprovide non-repudiationfor transactionsand support store-and-
forward backendsThe proposedextensiongo TLS provide secureshared-secret
authentication to support registration.

2. Transactionsare fundamentally two-party affairs. Multi-phase, multiplexed,
stagedforwarded,and nestediransactionan all be designedout of two-party
elements.

3. Public-keyauthenticatiorprotocolsare easierto implementand deploythan are
shared-secretuthenticatiorprotocols.Use of shared-secrgbrotocolsshouldbe
minimized and eliminatedwherepossible.Neverthelessintegrationwith legacy
systems will require their use in some circumstances.

4. Clients should sign all transactionsdigitally. With signatures,a transaction
protocolhasnon-repudiatiorand freedomfrom managingsecretauthentication
data. Account numbers,PINs, passwordsand so on becomeworthlessto an
adversarysince s/he cannot use them without also creating a valid digital
signature,assumingreplay protection. The adversarycannot create a valid
signaturewithout controlling the client's private key. This premiseimplies that
clients must have certified signature keys.

5. Financialinstitutionswill (or should)insiston managingtheir own client name
spaces.In a public-key setting, this implies that they will issue their own
certificates for client signature keys, since they need to bind their own
attributes—Ilike account numbers—to principals they recognize.

2 Financial Applications. Basics

Assume,as a baseline,that clients of any financial applicationdemanda private
channel,insist on mutual authenticationand agreeto sign every transaction.Of
these,authenticatioris the leastunderstoodIn the paper-and-inkvorld, possession
of a State document—presumed uncopyable—dftdiices,but this is not possiblein
the electronicworld where anything can be copied. In the electronicworld, Alice
authenticates Bob by getting him to praerent possessioof one or moresecretsa
passwordPIN, sharedsecretkey, or the private half of a public-privatekey pair. In
financial protocols,and especiallyon the Internet, requirementdor each of these
typesoften coexistwithin the samesessionWe usethe term certification to mean
establishinghe meansof this proof so that authenticatiorcan proceedater on in a
mannermutually acceptablégo client and financial institution. First, we describea
traditional, non-electroniccertification protocol as a preludeto describingGUMP's
meta-protocols.

2.1 Traditional certification protocol

A typical client consumes numberof productsand servicesprovidedby a financial
institution. The client may have demand-deposiaccounts,mortgages,unsecured
loans, annuities,insuranceaccounts,credit cards, debit cards, check cards, ATM
cards,brokerageaccountsandsoon at a singleinstitution. The institution and client
agree on aaccountnumberfor eachdistinguishablgroductor service butthe setof
accountnumbersare boundto a single client identity—indeed,they constitutethe
client identity from the point of view of the institution. No merenameand address,
etc, would suffice without the accountnumbers.This definition of identity benefits
boththe client andtheinstitution. The client will havefreedomof movementamong
the accountsandthe institution cantrack the client'sactivitiesfor legal and business
purposes.

The traditional certification protocol goes roughly as follows:

=

MEET: The client and an official of the financial institution meet face-to-face.

2. IDENTIFY: The client provides satisfactory proof of identity—at least as
definedby the State—tothe official of the institution. This proof may be in the
form of a birth certificate, driver's license, employer picture ID, and so on.

3. PRESENT: The official copiessome of the identity information plus some
information of his own to a papersignaturecard and presentsthe card to the
client for signature(we call the card a preimageat the moment,sinceit is not
signed,in anticipationof the digital analogof this protocol). The informationon
the card is a matter of institution policy, but must contain a masteraccount
numberor someother kind of primary index key into the institution’s client
database.

4. RETURN: The client signs the paper signature card with ink and gfiveeckto
the official. Perhapsthe client signs one card for each account. More
interestingly from our perspectiviie client may siga singlecard that contains
all the client's account numbers

5. FILE: Theofficial of theinstitution countersignshe cardandfiles it, makingit

a signature-card-on-file (SOF)

The following figure illustrates this protocol

Traditional, paper-based, financial certification protocol

MEET: Face-to-Face

IDENTIFY : driver's licence, birth cerfificate,
employee ID, etc.

Client
Official of the
Certifying PRESENT : preimage of signature file card, with
Financial policy-dependent account #5, index keys and IDs
Institution

RETURN : signed file card

Permanent

FILE : countersigned file card
Storage

After this certification protocol, the financial institution acceptstransactionorders
only whenaccompaniedy a fresh paper-and-inkclient signaturethat an official of

the institution can compareagainstthe SOF. The institution usesone SOF for a
whole collectionof accountsthatis, for a whole collectionof productsand services.
The SOF becomesthe institution’s permanentrecord of evidence of prior

authentication.

We also use the term ‘authenticatida’referto the later comparisorof signatureon
transactiorordersagainstthe SOF, noting that authenticationin this latter usagejs
authentication of the transaction, not of the client him- or herself.

The security of the traditional protocols follows from the following assumptions:

1. Paper-and-inlsignaturesrehardto forge. Only professionatriminalscaneven
attempt forgery. Casually counterfeit transactions are not feasible.

2. The official of the financial institution can be trained to detect forgeries.

3. The client is not liable for signatures obtained ‘at gun-poamtsoon. Business
case law applies myriad other restrictions and remedies to signed transactions.

4. No transactions are accepted without a signature and a signature check.

The mostimportantis the last: it meansthat accountnumbersare worthlessto an
adversary who cannot forge a signature

2.2 Foundationsfor GUMP

This observationwas the foundationfor GUMP. We askedourselveswhetherwe
could avoidthe cryptographic,infrastructural,and engineeringcomplexities that
follow from attemptingto hide numberdrom adversarie®n the Internet.The answer
is only if the numbershaveno value.For example to a first approximationthe only
reasona credit card numberis valuableto an adversaryis that s/he may use the
numberto buy thingswithout a signaturevia MOTO (Mail-Order Telephone-Order).
If a digital signature andignaturecheckwererequiredon everytransactionthenthe
cardnumberalonewould haveno value.Now, to a secondapproximationthereare
other good reasons to keep a credit card nusdeetagainstotherprotocolhazards.
Forgerymight be attemptedpr the bankmight nevercheckthe signature might not
requirethe merchantto passsigneddraft slips backfor signaturecheck,and so on.
However, none of these hazards exist with public-key cryptography. It is
mathematicallyinfeasiblefor anyoneto forge a digital signature and signaturesnay
be cheaply checked by anyone, not just the financial institution

The latter point is anotherfundamentadifferencebetweenpaper-and-inksignatures
and digital signatures.The financial institution must keepthe SOF secureagainst
substitution or disclosure, so thestitution becomes centralbottleneckfor signature
checking.Sinceit is not feasibleto checkeverytransactiorat the institution, various
systemshavevariouswaysof bypassinghe check.A credit card,for example hasa
tamper-resistargignatureblock on the back,and merchantsare supposedo checkit

againstthe signeddraft. Essentially,the cardholder'sbank delegateshe signature
checkto the merchantin this case,at the risk of the back-of-cardbeingmodified by
clever hackers.However,in the caseof public-key digital signaturesanyonewho
trustsa given CA root key can performfoolproof verification of any signature These
principlesunderly the designof the Visa/MasterCardsecureElectronic Transaction
(SET) protocol5] whichis specificallytailoredfor encryptedcreditcardtransactions
betweena consumeran untrustedmerchant,and a trustedgateway. GUMP, unlike
SET, assumes generic,two-partytransactiorwhereno valuableaccounthumberis
required and authenticationrather than encryption insuresintegrity. While not
appropriatefor credit cardtransactionsvherethe consumer-merchamelationshipis
spontaneousand transient, GUMP could apply to the large class of financial
transactions that depend on a trusted and on-gelagonship;for example between
a customer and his bank.

In fact, the following GUMP protocolexamplesareintendedto be electronic
equivalentf commonbankpractices. The only twist is the useof a unique,but not
secret number, in every signed transaction.

3 GUMP Registration Meta Protocol

The Internet analog of a SOF isatified public signature key (CPSK). The GUMP
Registration Meta-protocol (GRMP) is a frameworkfor designingandimplementing
a financial institution'scertification policiesthat resultin a client's CPSK, packaged
as a GUMP relationship certificate (GRC). The GRC, of course, is public
information that can be sentwith transactionpackets,storedin online directories,
cached on distributed machines, and so on.

The GRMP has the following steps:

1. APPLY: The client applies for a service either in persarthroughthefinancial
institution's web site.

2. IDENTIFY: The client provides satisfactory proof of identity to the official of the
institution. GUMP allows maximal freedom for policy choices by the institution:

2.1. In the caseof face-to-facecertification,identification might be showing
State documents, as in the traditional protocol.
2.2. In the caseof electronicidentification, the institution might require a

signatureon a challengewith a verification key from a genericidentity
certificate, such as one from Verisign or the US Postal Service.

3. KEY (optional step): The official of the institution givesthe client a one-time
secret (OTS) out-of-bandfor example,in a PIN mailer. We propose here,that
this secretbe the hashof all the accountnumbersthat will be servicedby the
GRC. This proposalallows the institution and client to checkoneanother:each
canindependentl}computethe hash.However,the exactform of the OTSis not
very important. From the protocol standpoint,it must simply be uniqueto the
institution issuing itFromthe systemdesignstandpointjt will mostlikely bean

indexkey thattheinstitutionwill useto lookup clientinformation.This stepcan
be skipped,as a matterof policy, if the client is separatelyauthenticateds in
2.2; the institution may simply issue the OTS in the GRC in step 5.

4. REQUEST: Thisis thefirst stepthatis alwaysonline. The client digitally signs
and submits a PKCS#10 (or other suitable fofra...) Reguest for Certification
(RFCert), which containsa proposedpublic signaturekey, and securelyproves
possessiorof the OTS via the TLS shared-keyauthenticationprotocol in the
Appendix. The digital signaturef this point, provesonly thatthe client controls
the as-yet-uncertified private signature key.

5. ISSUE: The institution digitally signs ansendsbacka GRCbindingtheclient’s
public signature key to the OTS. From this painfthe OTSis nolongersecret
It is simply a public attribute, certified by the institution, of the client's public
signature key. This ithereasonwe call it theunsecret. An adversarycannotuse
the OTS without alsotaking control of the client’s private signaturekey, which
we make as difficult as possible.

The following diagram illustrates this meta-protocol

GUMP Registration Meta-Protocol

APPLY: In-person or on Web

IDENTIFY : possible paper IDs or
signed challenge plus generic identity certificate

Official of the
CF:.erT'fy'an KEY (optional): one-time-secret (OTS) sent Client
Inls?iir]LT‘r%(r]w out of band, e.g., PIN mailer or phone call .

REQUEST : signed Certificate Request, plus OTS
authenticated by TLS shared-key auth protocol.

ISSUE : Gump Relationship Certificate (GRC): sign/ex
client public key and OTS

A\

One-Time Secret (OTS) is not
secret after this point
because client signatures are
required on all fransactions
that use the Gump
Relationship Certificate (GRC)

The GRC is the analogof the SOF—Signature-card-on-fil& he institution accepts
no transactionsvithout a digital signature which an official of the institution (or his
computer programs) can compare against the SOF.

We note, with emphasisthat step 3 is the only part of the entire proposal that

requires modification of standard, off-the-shelf technology The proposed
modificationof TLS [3] canbeusednot only for the GUMP unsecretbut muchmore
broadly for passwordsPINs and other secrets.Thesemodificationsavoid sending
passwordsPINs, or othersecretauthenticatiordataover weakly encryptedchannels,
like thoseapprovedfor exportfrom the US. Instead,they passa quantity that any
party possessinghe sharedsecretcan recompute,but that no one else can. The
guantity is essentiallythe hashof the sharedsecret,though other datalinking the
guantityto the currentsessiorandto establishedhamesof both partiesis includedin

the hash. Details may be found in the appendix

3.1 Mutual Authentication without Secrecy

Oneinnovationof this paperis the unsecrenumber,which tiesthe public key in the
GRC to all client relationshipsith the financialinstitution. The numberis uselesgo
an adversarywho doesnot control the client’s private key. We may nowseewhy
encryptionof this numberis not neededsolong asall transactionsre signed.Before
certification, the client satisfies the institution’s certification policy. After
certification, the client satisfiesGUMP's authenticationpolicy, which is simply to
sign, digitally, a transactioninstrumentcontaininga freshnesschallenge,proving
currentcontrol of the private signaturekey correspondingo the public key in the
GRC. This public key is boundto the unsecretoy the institution's signatureon the
relationship certificate.

The cryptographicallysavvy have alreadyrecognizedthat the pubic key aloneis a
perfectlygood“unsecret”. The whole exerciseof hashingaccountnumbersis to give
the client and the institution a non-random number they can independently
control,and to reduce the unsecret to 20 bytes or lesgxBarple the unsecremight
be a useror groupdenotingaccespermissionsn an ACL. More likely, it will be a
primary databasédey, so somethousand-oddits of compositebignumwould not be
helpful in this regard.To be fair, the substitutionof any agreed-upordatumwould
make an equally good unsecret. It is simply a local name.

3.2 Theldentity and Relationship Certificates

SSLv3.0includesboth serverand client authentication A browserclient routinely
authenticates serverasa part of the ServerHello. With version3.0, the servermay
requirethe client to sign a challengeand presenia certified public signaturekey that
verifies the signature on the challenge. Typically, to use this featureljghtgetsan
identity certificate from a commercialor governmentcertificate authority, such as

Verisign or the PostalService,and storesit someplaceconvenient,like a browser
database or a directory service. The financial institution certification policigs2
and 4 above)may acceptthe identity certificatein place of traditional, show-your-
face-and-papers identification. So, why still issue a relationship certificate bihaing
client’s public signaturekey to the unsecret?The answeris for local control of
names If the institution were to rely on someoneelse'sidentification and naming
conventions to conduct its business or indexaabasest would haveto internalize
or map those naming conventionsto its own legacy systems.If, however, the
institution issuesits own certificates,thenit can bind the client's public key to the
mostconvenientdentifier. The unsecretoesnot needto be globally unique,it does
not needto be checkedby anyoneelse,it doesnot have any externalrequirements
whatsoever. It is simply the institutiordsvn local "name" for the client.

The GUMP relationshipcertificatethen, is a proxy for a businesgelationshipthat
can be resolved to a single person and any number of accounts.

4 GUMP Transaction Meta Protocol

Transactionsn GUMP are incredibly simple and freely configurable.A client may
conducta GUMP transactionwith any entity that trusts the root key of the GRC
signaturechain.Let us call thatentity the merchant just for the sakeof discussionlt
may be the institution itself or it may be any numberof delegateor associatesvho
trust a signature verification chain that includes the GRC and its signature keys.

The client and the merchantmay conductarbitrary negotiationsprior to the client's
signing a transaction instrument (T1). We advocatethat the client authenticatehe
merchant via SSL/TLSNe further advocatehatthe merchantauthenticatehe client
via SSL/TLSclient authenticationln the latter, the merchantmay requestthe GRC
rather than the prosaicidentity certificate, becausethe financial institution either
issued or understandsthe unsecretnumber. However, GUMP does not require
SSL/TLS client auth nor that client auth, if used,employ the GRC ratherthan the
identity cert.

When negotiationsare closed and the client is ready to commit the transaction,
GUMP requiresthe client to constructan instrumentsignedwith the (private half of
the) client key, and to embedthe signed instrumentwith a valid GRC that the
merchanttrustsinto the SSL/TLS stream.EmbeddedS/MIME might be a suitable
formatfor suchanembeddedapsule However,encryptionshouldbe avoidedasit is
not neededor GUMP, it is alreadyprovidedby SSL/TLS,and embeddedncryption
createsITAR product export clearanceproblems. The reasonfor the embedded,
signedinstrumentis that TLS mutual authenticatiordoesnot provide the merchant
with a permanent, non-repudiable record of client commitment.

GUMP requiresonly that the instrumentbe replay proof, meaningthat it containa
secure timestamp, a unique transaction identifieg,large (128-bit,at least)random

freshness challenge thihie client signs.It is a goodideafor a transactiorinstrument
to contain all three replay protections. Otherwise, structure and content of the
instrument are free.

5 GUMP Delegation Protocol: Memberships

Again, SecureElectronic Transactions—SET—th&/isa-Mastercardstandard[5],
addresseshe problemof spontaneousredit card transactionson the Internet. The
model assumeghat the buyer and seller prefer to remain anonymousand that a
virtual sessiorbetweerthe client andthe merchant’shankis necessaryo protectthe
credit card number from malicious misuse by the merchant.

While this degreeof cautionis appropriatefor the Internetin generaland especially
for transactions where the card number alone can be used in fraudokghedno-
card-presentransactionsthereexistsa different categoryof transactionsvherethe
partiestrust eachother and, to someextent, transactfrequently. Examplesinclude
business-to-businespurchasing, frequent flier programs, and even sports club
membershipsThe commonthreadis thatthereis a contract—"ofsorts” or formal—
between the partners that explicitly lays out the rules, which are almost always:

Alice (the member) authorizes Bob (the club) to do
something on a case-by-case basis

A trivial examplemight be that Alice authorizesBob to sendher companythe goods
describedn her purchaseorder—butonly uponBob’s presentingher with a detailed
invoice. The purchasds completedonly when Alice signsand returnsthe invoice,
acknowledging the terms of sale and completing the commitment to buy.

The relationship between Alice and Bob has the following characteristics:

1. Theytrusteachother,or, at leastthey did oncewhen they createdtheir shared
unsecret, meaning they have already shared a secret.

2. Because Bob already possesses Alice’s secret, he carondeitbehalf without
having her share it again; but,

3. The contractbetweenthem requiresthat Bob get Alice’s (signed!) permission
each time.

The essenceof the matteris that Bob can negotiatefor Alice, but only Alice can
commit. So, Bob may havea GUMP Delegation Certificate (GDC) that binds his
public key to Alice's unsecret,and Bob may use the GDC to establishmutually
authenticated TLS negotiation sessions with Alice and others. BuAtiog/cansign
a transaction instrument with her GRC.

The GDC may simply be a certificate issued by Alice for Bob, containing her

unsecret,his public key, and verifiable with her GRC. We see that expediency
mitigatestowardeveryclient beinga CA of sorts.This observatiorhasbeenmadeby
the authorsof SDSI [4]. Indeed, we speculatethat GUMP—in pure meta form
(especiallyif the restof Lisp or Schemewere addedto SDSI) or in someconcrete
application—can be very easily implemented on top of SDSI.

In termsof the protocol, requestingand grantingpermissionaddsanotherstep— but
alsohasthe advantagef transparently addinga third party to the transactionThe
underlying concept is that this trust need not be transitive:

Alice authorizesBob (whom shetrusts)to useher unsecreto negotiatea transaction
with Chuck (whom only Bob knows and trusts). Eachtime, Bob must presentthe
permission and Alice must sign it.

6 Design and deployment : advantages of smplicity

High on the list of advantage®f standards-basefinancial protocolsis quick and
painless deployment. Channel security (TLS) is quickly becoming requisite for
businesson the Internet, and the only changerequiredto use all of the GUMP
protocols is shared-keyauthentication—anthis is alreadydestinedo becomea part
of the TLS standard. Betteryet, secure-channgdrotocolsand APIs to usethemare
being bundledwith platform componentdike operatingsystemsand browsers.In
most cases, writing security protocols “from scratch” has no payback.

The restof the problemthenis design,and unfortunately,that’s wheremost of the
really serious mistakes are made.

Encryption vs. authentication: Confusion of these two operations tracks
cryptography’srelatively recent emergenceas the darling of the businesspress.
Encryptingis chic, butin manycasesot at all necessaryo accomplishthe security
objective.A combinationof Hashfunctionsanddigital signaturesanprovideaccess
control, messageauthentication,and data integrity --- all without secrecy--- as
illustratedin this paper.Encryptionshouldbe avoidedwhennot necessaryhecauset
makes governments nervous.

Trust hierarchiess We advocateonly two at most—the issuers of GUMP
RelationshipCertificatesand the issuersof the identity certificates.These,in turn,
should be either self-signedor two-deep.Users can easily install trusted keys of
certificate authorities itheir browsersandwith GUMP, multiple accountswith each
entity arerepresentetby a singlerelationshipcertificatecontainingthe unsecretThe
advantageof “flat” ratherthan“fat” trusttreesis obvious: people- not computers
have to maintain them.

Key Management and security policy: Centralto the succes®f any securitydesign
is how well keysare managed: generatedstored,refreshedandreplaceduponloss

or compromise. While stringency of individual policies may vary based on
requirementstheir designand test is no lessimportantthan that of the software
itself. In practice,security systemsmost often fail from the simple combinationof
carelessneser inadequatedisasterplanning. By contrast,the cryptographyis the
simple part.

Finally, the original objectiveof this paperwasto stimulategooddesignandlow-cost
deployment of financial security solutions by supplying frameworks basé&aff-the-
shelf” standards.While we anticipate creative extensions,permutations,and of
course, correctionsas the GUMP set is actually implemented,our objective is
achievedf a single GUMP --- either meta-protocobr concept--- finds its way into
real financial applications.

7 Acknowledgements

Thanksto Daniel Simon,Yacov Yacobi, Rick JohnsonMike Daly and Dipan Dewan
for their valuable contributions to our work.

References

[1] A.O. Freier, P. Karlton, and P.C. Kocher,
The SSL Protocol: Version 3.Blar. 1996.
Internet Dratft, ftp://ietf.cnri.reston.va.us/
internet-drafts/draft-freier-ssl-version3-%01.txt.

[2] A.O. Freier, P. Karlton, and P.C. Kocher,
T Dierks.The TLS Protocol Version 1.8ov 1996.
Internet Dratft, ftp: ://ietf.cnri.reston.va.us/
internet drafts/draft-freier--tls-protocol-00.txt.

[3] D Simon,Addition of Shared Key Authentication
to Transport Layer Security (TLS8pv 1996.
Internet Dratft, ftp: ://ietf.cnri.reston.va.us/
internet drafts/draft-simon-tls-passauth-00.txt

[4] Rivest, R. L. and Lampson, B.,
"SDSI—A Simple Distributed Security Infrastructure”
http://theory.lcs.mit.edu/~rivest/sdsi10.html

[5] Visa and MasterCardgecure Electronic Transactions
Protocol (SET), August 1996, http://www.visa.com/
cgi-bin/vee/sf/set/intro.html?2+0, www.mastercard.com/set

APPENDIX

Shared Key Authentication for the TLS Protocol

1. Introduction

This document presents a shared-key authentication
mechanism for the TLS protocol. It is intended to allow
TLS clients to authenticate using a secret key (such as a
password) shared with either the server or a third-party
authentication service. The security of the secret
authentication key is augmented by its integration into
the normal SSL/TLS server authentication/key exchange
mechanism.

2. Why Shared Key Authentication?

Recent transport-layer security protocols for the

Internet, such as SSL versions 2.0 and 3.0 [1, 2] and PCT
version 1 [3], have effected challenge-response
authentication using strictly public-key (asymmetric)
cryptographic methods, with no use of out-of-band shared
secrets. This choice has both benefits and drawbacks.
The primary benefit is improved security: an asymmetric
private key used for authentication is only stored in one
location, and the out-of-band identification necessary for
public key certification need only be reliable, not

secret(as an out-of-band shared key exchange must be). In
addition, the difficult task of out-of-band shared-key
exchange in shared-key authentication systems often leads
implementers to resort to human-friendly shared keys
(manually typed passwords, for instance), which may be
vulnerable to discovery by brute force search or "social
engineering".

However, shared-key authentication has certain advantages
as well. These are, chiefly:

- Portability: Precisely because shared keys are often
human-remembered passwords or passphrases, they can be
transported from (trusted) machine to (trusted) machine

with ease--unlike asymmetric private keys, which must be
transported using some physical medium, such as a diskette
or "smart card", to be available for use on any machine.

- Backward Compatibility: Shared-key authentication is in
very wide use today, and the cost of conversion to its
public-key counterpart may not be worth the extra
security, to some installations.

- Established Practice: Shared-key authentication has
been in use for quite a while, and a valuable body of

tools, techniques and expertise has grown up around it.
In contrast, public-key authentication is very new, its
associated tools and methods are either untested or non-
existent, and experience with possible implementation or
operation pitfalls simply doesn't exist.

These reasons are particularly relevant when individual
human users of a service are being authenticated over the
Internet, and as a result, virtually all authentication of
(human) clients of such services is currently performed
using shared passwords. Typically, servers implementing
one of the aforementioned transport-layer security
protocols, and needing client authentication, simply
accept secure (i.e., encrypted and server-authenticated)
connections from each client, who then provides a password
(or engages in a challenge-response authentication
protocol based on a password) over the secure connection
to authenticate to the server.

Unfortunately, such "secure" connections are often not
secure enough to protect passwords, because of the various
international legal restrictions that have been placed on

the use of encryption. Obviously, secret keys such as
passwords should not be sent over weakly encrypted
connections. In fact, even a challenge-response protocol
which never reveals the password is vulnerable, if a

poorly chosen, guessable password is used; an attacker can
obtain the (weakly protected) transcript of the challenge-
response protocol, then attempt to guess the password,
verifying each guess against the transcript.

However, it is possible to protect even badly-chosen
passwords against such attacks by incorporating shared-key
authentication into the transport-layer security protocol
itself. These protocols already involve the exchange of

long keys for message authentication, and those same keys
can be used (without the legal restraints associated with
encryption) to provide very strong protection for shared-
key-based challenge-response authentications, provided
that the mechanism used cannot be diverted for use as a
strong encryption method. This latter requirement makes

it essential that the shared-key-based authentication

occur at the protocol level, rather than above it (as is
normally the case today), so that the implementation can
carefully control use of the long authentication key.

3. Protocol Additions
Starting from SSL version 3.0 notation and formats, the
following three new HandshakeTypes are added, and included

in the Handshake message definition:

shared_keys(30),shared_key request(31),
shared_key_verify(32)

A new CipherSuite is also included, to allow the client to
signal support for shared-key authentication to the
server:

TLS_AUTH_SHARED_KEY = {x01, x01};

The client’s inclusion of this CipherSuite is independent
of other listed CipherSuites, and simply indicates to the
server the client's support for shared-key authentication.

3.1 SharedKeys message
The SharedKeys message has the following structure:

struct {
DistinguishedName auth_services_client<1..65535>;
} SharedKeys;

This optional message may be sent by the client
immediately following the ClientHello message; in fact, if
sent, it is actually enclosed within the ClientHello
message, immediately following the last defined field of
the ClientHello message. (For forward compatibility
reasons, the SSL 3.0 ClientHello message is allowed to
contain data beyond its defined fields, and because there
is no ClientHelloDone message, the server cannot know that
an extra message follows the ClientHello unless it is
actually included in the ClientHello message itself. A
server that does not support shared-key authentication
will simply ignore the extra data in the ClientHello
message.) Although enclosed within the ClientHello, the
SharedKeys message retains the normal structure and
headers of a Handshake message.

The SharedKeys message contains a list of distinguished
names of authentication services to which the client is
willing to authenticate. This list need not be exhaustive;

if the server cannot find an acceptable authentication
service from the list in the SharedKeys message, then the
server is free to reply with a list of acceptable services

in a subsequent SharedKeyRequest message.

In cases where pass-through authentication is used, this
message allows clients to be able to notify servers in
advance of one or more authentication services sharing a
key with the client, so that the server need only fetch

(or use up) a challenge from a single service for that
client. This message may also be useful in non-pass-
through situations; for example, the client may share
several keys with the server, associated with identities
on different systems (corresponding to different
"authentication services" residing on the same server).

If a server receives a SharedKeys message, then any

subsequent SharedKeyRequest message can contain a single
authentication service selected from the client's list.

Note that sending a SharedKeys message does not in itself
normally reveal significant information about the client's
as-yet-unspecified identity or identities. However, if
information about the set of authentication services
supported by a particular client is at all sensitive, then

the client should not send this message.

3.2 SharedKeyRequest message
The SharedKeyRequest message has the following structure:

struct {
DistinguishedName auth_service_name;
opaque display_string<0..65535>;
opaque challenge<0..255>;

} AuthService;

struct {
AuthService auth_services_server<l1..65535>;
} SharedKeyRequest;

This optional message may be sent immediately following
the server's first set of consecutive messsages, which
includes the ServerHello and (possibly) the Certificate,
CertificateRequest and ServerKeyExchange messages, but
before the ServerHelloDone message. The
auth_services_server field contains a list of

distinguished names of shared-key authentication services
by which the client can authenticate. The challenge field
accompanying each authentication service name contains an
optional extra authentication challenge, in case the

server needs to obtain one from an authentication service
for pass-through authentication. If none is required,

then it would simply be an empty (zero-length) field.
Similarly, the display_string field may contain

information to be used (displayed to the user, for

example) during authentication, if needed; its

interpretation is left to the implementation.

3.3 SharedKeyVerify message

The SharedKeyVerify message is sent in response to a
SharedKeyRequest message from the server, at the same
point at which a CertificateVerify message would be sent

in response to a CertificateRequest message. (If both a
CertificateRequest and a SharedKeyRequest are sent by the
server, then the client may respond with either a
CertificateVerify message or a SharedKeyVerify message.
Only one of the two messages is ever sent in the same

handshake, however.) The SharedKeyVerify message has the
following structure:

struct {

AuthService auth_service;

opaque identity<1..65535>;

opaque shared_key response<1..255>;
} SharedKeyVerify;

The value of auth_service must be identical to one of the
AuthService values on the list in
SharedKeyRequest.auth_services_server. If the client does
not share a key with any of the authentication services

listed in the SharedKeyRequest message (and cannot supply
a certificate matching the requirements specified in the
accompanying CertificateRequest message, if one was sent),
then the client returns a "no certificate" alert message

(in its normal place in the protocol).

The format of the identity field is left to the
implementation, and must be inferable from the
accompanying value of auth_service. The value of
shared_key response is defined as

SharedKeyVerify.shared_key response
hash (auth_write_secret + pad_2 +
hash (auth_write_secret + pad_1

+ hash (handshake_messages)
+ SharedKeyVerify.auth_service.auth_service_name
+ SharedKeyVerify.auth_service.display_string
+ SharedKeyVerify.auth_service.challenge
+ SharedKeyVerify.identity + shared_key))

Here "+" denotes concatenation. The hash function used
(hash) is taken from the pending cipher spec. The
client_auth_write_secret and server_auth_write_secret
values are obtained by extending the key_block by
CipherSpec.hash_size bytes beyond the server_write_key (or
the server_write 1V, if it is derived from key_block as

well), and using this extended portion as the
client_auth_write_secret value. (Only the
client_auth_write_secret is used, since only the client

ever sends a SharedKeyVerify message.) The value of
handshake messages is the concatenation of all handshake
messages from the first one sent up to (but not including)

the shared_key verify message. The pad_1 and pad_2 values
correspond to the ones used for MAC computation in the
application_data message. The fields from the
SharedKeyVerify message are input with their length

prefixes included.

4. Normal Authentication

A shared-key-based client authentication may proceed as

follows: the client includes the TLS _AUTH_SHARED_ KEY
CipherSuite in its list of CipherSuites in its ClientHello
message. It also may or may not send a SharedKeys message
along with the ClientHello message, listing the

authentication services with which the client shared a key

for authentication purposes. In any event, the server

sends a SharedKeyRequest handshake message following the
ServerHello and accompanying messages containing a list of
names of one or more authentication services; if a
SharedKeys message was sent, then this list will contain a
single choice from the client's SharedKeys message. The
client, on receiving the SharedKeyRequest message, selects
an authentication service from the server's list (if more

than one is offered) and constructs the appropriate
authentication response as described above, sending it
back, along with its identity and choice of authentication
service, in a SharedKeyVerify handshake message. The
server itself also constructs the correct authentication
response using the known shared key, and checks it against
the one provided by the client. The authentication is
successful if the two match exactly. Note that if the

shared key is password-based, then it would typically be
derived from the password using a one-way cryptographic
hash function, rather than being the password itself, so

that the original password need not be remembered by
anyone but the client.

5. Pass-through Authentication

In some circumstances, it is preferable for shared keys to
be stored in one place (a central, well-protected site,

for instance) while servers that actually communicate with
clients are elsewhere (possibly widely distributed, but
maintaining secure connections to the central shared-key
server). One of the advantages of the shared-key
authentication method proposed here is that it allows
"pass-through" authentication by a third party, if the
server accepting the public-key key exchange and the
server sharing the key with the client happen to be
different. (The use of a separately derived

authentication key in the response computation makes this
possible.)

Pass-through authentication might work as follows: The
server would either collect random challenges in advance
from its authentication services, or request them as

needed. (If the client sends a SharedKeys message, then
the server can select an authentication service from the
client's list, and obtain a challenge from that service

alone.) Assuming that the client indicates support for
shared-key authentication by including the
TLS_AUTH_SHARED_KEY CipherSuite in its list, the server
would then send a list of one or more authentication
services and associated challenges in a SharedKeyRequest

message. The client would then select an authentication
service (if more than one is offered), compute the correct
authentication response using the above proposed formula,
and send it to the server in a SharedKeyVerify message.

The server, on receiving a response from a client, would
pass it through to the authentication service, along with

the values necessary to recalculate it: the
client_auth_write_key, the hash of all the handshake
messages and the identity field from the certificate

verify message. The authentication service would then use
the values provided, along with the secret key it shares
with the client and the challenge it supplied, to

reconstruct the correct value of the response. If this

value exactly matches the one provided by the server, then
the authentication would succeed; otherwise it would fail.

References

[1] K. Hickman and T. Elgamal, "The SSL Protocol”,
Internet Draft

<draft-hickman-netscape-ssl-01.txt> (deleted), February
1995.

[2] A. Freier, P. Karlton and P. Kocher, "The SSL
Protocol Version

3.0", Internet Draft <draft-freier-ssl-version3-01.txt>,
March 1996.

[3] J. Benaloh, B. Lampson, D. Simon, T. Spies and B.
Yee, The PCT

Protocol", Internet Draft <draft-benaloh-pct-00.txt>,
November 1995.

