
The SPEED Cipher

?

Yuliang Zheng

School of Computing, Monash University

McMahons Road, Frankston, Melbourne, VIC 3199, Australia

Email: yzheng@fcit.monash.edu.au

Abstract. SPEED is a private key block cipher. It supports three vari-

able parameters: (1) data length | the length of a plaintext/ciphertext

of SPEED can be 64, 128 or 256 bits. (2) key length | the length of an

encryption/decryption key of SPEED can be any integer between 48 and

256 (inclusive) and divisible by 16. (3) rounds | the number of rounds

involved in encryption/decryption can be any integer divisible by 4 but

not smaller than 32.

SPEED is compact, which is indicated by the fact that the object code

of a straightforward implementation of SPEED in the programming lan-

guage C occupies less than 3 kilo-bytes. It makes full use of current,

and more importantly, emerging CPU architectures which host a large

number of high-speed hardware registers directly available to applica-

tion programs. Another important feature of SPEED is that it is built

on recent research results on highly nonlinear cryptographic functions,

as well as other counter-measures against di�erential and linear crypt-

analytic attacks.

It is hoped that the compactness, high throughput and adjustable pa-

rameters o�ered by SPEED, together with the fact that the cipher is

in the public domain, would make it an attractive alternative cipher for

security applications including electronic �nancial transactions.

1 Design Philosophy

The aim of this paper is to introduce a private key cipher that is suitable for soft-

ware implementation and takes the maximum advantage of emerging computer

architectures that host an increasing number of fast internal hardware registers

directly available to application programs. The cipher is called SPEED which

stands for a Secure Package for Encrypting Electronic Data.

Cryptographic strength of SPEED is built on recent research results on con-

structing highly nonlinear Boolean functions [15, 16]. Operation e�ciency is an

important factor that has been taken into account in the process of design. An-

other design goal is to provide the cipher with applicability to fast one-way hash-

ing and e�cient generation of cryptographically strong pseudo-random numbers.

Encryption and pseudo-random number generation have direct applications in

?

The source code of SPEED implemented in the programming language C is located

at the following URL: http://pscit-www.fcit.monash.edu.au/~yuliang/



providing data con�dentiality, whereas one-way hashing is essential for e�cient

authentication and digital signature.

While most smart cards use 8-bit CPUs, workstations and personal comput-

ers are mainly based on 32-bit CPUs which support fast processing of 8, 16 and

32-bit data. Similarly, emerging 64-bit CPUs support e�cient handling of 8, 16,

32 and 64-bit data. This results in our decision for the basic data unit for the

encryption/decryption operation of SPEED to be a 8-bit, 16-bit or 32-bit word.

As a plaintext/ciphertext of SPEED consists of 8 words, choosing a 8-bit word as

the basic data unit results in a block cipher on 64-bit data, a 16-bit word results

in a block cipher on 128-bit data, and a 32-bit word results in a block cipher on

256-bit data. The process of SPEED is composed of 4 passes, each involving 8

or more consecutive rounds. Thus similarly to RC5 [14], SPEED supports three

variable parameters, namely data length, key length and the number of rounds.

Relevant ideas on variable parameters were previously used in a one-way hashing

algorithm called HAVAL [18].

A bit-wise nonlinear Boolean operation is employed in each round. To strengthen

the cipher against the di�erential attack proposed by Biham and Shamir [1], a

data-dependent cyclic shift is applied on the output of the operation. This tech-

nique was inspired by RC5. The use of a maximally nonlinear Boolean function

in a bit-wise Boolean operation would help thwart the linear attack discovered

by Matsui [9].

The remainder of this paper is organized as follows: Section 2 details the

speci�cation of SPEED, Section 3 provides background information on the round

transform used in SPEED, and Section 4 discusses the construction and proper-

ties of the �ve nonlinear Boolean functions used in SPEED. A preliminary anal-

ysis of the strength of the cipher against cryptanalysis is reported in Section 5,

while a comparison of SPEED with other ciphers in terms of its throughput (the

number of bits encrypted/decrypted per unit of time) is provided in Section 6.

Finally applications of SPEED in one-way hashing and pseudo-random number

generation are suggested in Sections 7 and 8.

2 Description of SPEED

First we introduce a few terms used in this paper. As a common practice, a byte

is composed of 8 bits. As we mentioned earlier, by a word we mean a string of 8,

16 or 32 bits. All bits in a byte or a word are indexed, starting with 0, from right

to left hand side. It is convenient to call right hand side bits lower bits, while

left hand side bits upper bits. Three types of operations are applied to data. The

�rst is bit-wise Boolean operations, the second is cyclic shifts (i.e., rotation) to

the right or left, and the third is modular additions.

In the following discussions we use w to indicate the length of (i.e, the number

of bits in) a plaintext/ciphertext, ` the length of a key, and r the number of

rounds. w can be chosen to be 64, 128 or 256, ` an integer between 48 and 256

(inclusive) and divisible by 16, and r an integer larger than or equal to 32 and

divisible by 4. SPEED with parameters w, ` and r may be denoted by (w; `; r)-



SPEED, or simply by w-bit SPEED if the length of a key and the number

of rounds are not concerned. In Table 1, various possible combinations of the

parameters w, ` and r that would provide adequate security are suggested

2

. It

is recommended that SPEED with less than 40 rounds be used only for one-way

hashing.

plain/ciphertext length w 64 128 256

(in bits)

key length ` (in bits)

(` = 48; 64; :::; 256, � 64 � 64 � 64

divisible by 16)

number of rounds r

(r = 32; 36; 40; :::, � 64 � 48 � 48

divisible by 4)

Table 1. SPEED Parameters for Adequate Security (r < 48 may be chosen only when

SPEED is used for one-way hashing)

2.1 Encryption

Given a key K of ` bits, SPEED scrambles a plaintext M of w bits into a

ciphertext C of the same length.

Flow of Data The 
ow of data in SPEED is depicted in Figure 1. A crypto-

graphic keyK, which is a string of ` bits, is �rst expanded by the key scheduling

function into four sub-keys K

1

, K

2

, K

3

and K

4

. Each K

i

, i = 1; 2; 3; 4, consists

of

r

4

words or round keys where

r

4

indicates the number of rounds in each pass.

A plaintext M is internally represented as 8 words, each

w

8

bits. These 8

words are processed by P

1

, P

2

, P

3

and P

4

consecutively. Each P

i

, i = 1; 2; 3; 4,

is called a pass and involves a sub-key K

i

. The output C of P

4

represents the

ciphertext of the original plaintext M .

Four Internal Passes As can be seen from Figure 2, the four internal passes

P

i

, i = 1; 2; 3; 4, all operate in a similar fashion, although each pass employs a

di�erent sub-key, as well as a di�erent nonlinear function for bit-wise Boolean

operations. The four nonlinear bit-wise operations are shown in Table 2 in the

form of logic \sum (XOR) of product (AND)".

2

See also a recent report by Blaze et al [2] which suggests that the length of a key for

a private key cipher should be at least 75 to provide adequate security for critical

commercial applications.
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Fig. 1. Encryption Using SPEED
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where

each X

i

is a

w

8

-bit word (w = 64; 128 or 256),

X

i

X

j

represents the bit-wise AND, and

X

i

�X

j

represents the bit-wise XOR of the two words involved.

Table 2. Bit-Wise Nonlinear Boolean Operations Used in P

1

, P

2

, P

3

and P

4

The input data (a string of 8 words) to P

i

is processed in

r

4

consecutive

rounds, each involving the corresponding word in the sub-key K

i

, where i =

1; 2; 3; 4. In the �rst round (round 0), the �rst 7 words in the input are bit-wise

processed according to F

i

which is shown in Table 2. The result of this operation

is then cyclically shifted to right. The exact number of bits by which the result is

cyclically shifted is determined by the upper log

2

w

8

bits of the (half-word) sum

of the left and right halves of the result. These upper log

2

w

8

bits are indexed

by 1, 2 and 3 for w = 64, by 4, 5, 6 and 7 for w = 128, and by 11, 12, 13, 14

and 15 for w = 256. The shifted version of the result of the nonlinear bit-wise

operation is added (in the sense of modulo 2

w

8

) to the cyclically shifted (to the

right by

w

16

� 1 bits) version of the left most word in the input, whose result is



m i,0m i,1m i,2i,3mm i,4m i,6 m i,5m i,7

iF

v

iF

v

i,0cc i,1c i,2c i,3c i,4c i,5c i,6c i,7

v

iF bit-wise nonlinear Boolean operation

2

Ki,j

c i,j

m i,j

r = 32,36,40,...

w/8 bits

w/8 bits

w/8 bits

Ki,0

d

d

Ki,r/4-1
Round r/4-1

Round 0

Rounds 1 ~ r/4-2

addition modulo

cyclic shift to the right by a variable number of bits

d cyclic shift to the right by d bits, d=w/16-1=3,7 or 15

w/8

w=64, 128 or 256

Fig. 2. A Pass P
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in SPEED, i = 1; 2; 3; 4



then added to the �rst word in the sub-key K

i

.

The �nal sum is regarded as an updated version of the left most word in the

input to this round. Now the eight words among which the left most one has

been updated are rotated to the left by a word, and then used as an input to

the next round.

The above process is iterated

r

4

times, each involving a di�erent word in the

sub-key K

i

. What follows is pseudo-code for a pass P

i

.

A Pass P

i

in SPEED, i = 1; 2; 3; 4

t7, t6, . . ., t0 hold a 8-word data, while Ki[0], . . ., Ki[r=4 � 1] hold a r=4-word

sub-key used in P

i

. The contents in t7, t6, . . ., t0 are updated according to the

following steps:

for j from 0 up to (r/4 - 1) do

t7 = rotate_right(t7, w/16 - 1);

tmp = Fi(t6, t5, t4, t3, t2, t1, t0);

vv = (((tmp >> w/16) + tmp) & HALF_WD_MASK) >> VV_SHIFT;

tmp = rotate_right(tmp, vv);

tmp = (t7 + tmp + Ki[j]) & FULL_WD_MASK;

t7 = t6; t6 = t5; t5 = t4; t4 = t3;

t3 = t2; t2 = t1; t1 = t0; t0 = tmp;

end of for loop

where & denotes bit-wise AND, >> denotes shift-to-right, rotate right(x; n) in-

dicates cyclically shifting a w=8-bit word x to the right by n bits, FULL WD MASK

= 2

w=8

� 1, HALF WD MASK = 2

w=16

� 1, and VV SHIFT takes the value of

11 for w = 256, 4 for w = 128 and 1 for w = 64 respectively.

2.2 Key Scheduling

An encryption/decryption key K for SPEED is a binary string of ` bits, where

` is an integer between 48 and 256 (inclusive) and divisible by 16. The function

of the key scheduling is to \extend" K into r words or round keys required by

the r rounds of processing. The following issues are considered in designing the

key scheduling:

1. It is simple.

2. It allows fast software implementation.

3. It does not have trivial weak keys.

4. It is one-way at least in a weak sense.

The basic data unit in the key scheduling is a double-byte data. Thus an

`-bit or

`

8

-byte key is �rst translated into

`

16

internal double-byte data units kb

0

,



kb

1

, . . ., kb `

16

�1

. For convenience, let `

db

=

`

16

denote the length of a key in

double-bytes. The key scheduling algorithm extends kb

0

, kb

1

, . . ., kb

`

db

�1

. into

an array of units kb

0

, kb

1

, . . ., kb

`

db

�1

, kb

`

db

, . . ., kb

last�1

, where last is

r

2

when

w = 64, r when w = 128, and 2 � r when w = 256 respectively. Finally these

units are translated into round keys (words) required by the r rounds in SPEED.

Key Scheduling of SPEED

Step 1. Let kb[0], kb[1], . . ., kb[last � 1] be an array of double-bytes, where last is

r

2

when w = 64, r when w = 128, and 2 � r when w = 256 respectively. We

store the original `-bit key in kb[0], . . ., kb[`

db

� 1] as `

db

double-byte data

items. Note that the order of the original key bits is maintained.

Step 2. This step constructs kb[`

db

], . . ., kb[last � 1] from the user key data kb[0],

. . ., kb[`

db

� 1]. It employs three double-byte constants Q

`;0

, Q

`;1

and Q

`;2

.

1. Let S

0

= Q

`;0

, S

1

= Q

`;1

and S

2

= Q

`;2

.

2. For i from `

db

to last� 1 do the following:

(a) T = G(S

2

; S

1

; S

0

).

(b) Rotate T to the right by 5 bits.

(c) T = T + S

2

+ kb[j] (mod 2

16

), where j = i (mod `

db

).

(d) kb[i] = T .

(e) S

2

= S

1

, S

1

= S

0

, S

0

= T .

In the calculation, G represents a bit-wise operation de�ned by

G(S

2

; S

1

; S

0

) = S

2

S

1

� S

1

S

0

� S

0

S

2

where each S

i

is a double-byte data, S

i

S

j

represents the bit-wise AND, while

S

i

� S

j

the bit-wise XOR of the two data involved.

Step 3. This step translates the last double-byte data kb

0

, kb

1

, . . ., kb

last�1

into r

rounds keys, each composed of

w

8

bits. The translation maintains the order

of the double-byte data.

The three double-byte constants (Q

`;0

, Q

`;1

and Q

`;2

) used in the second

step are taken from the fractional part of the square root of 15. The �rst three

constants from the fractional part are used for the case of ` = 48, the next three

are for ` = 64, and so on. Thus in total 42 constants are required for the 14

di�erent key lengths. These constants are shown below in the hexadecimal form.

DF7B D629 E9DB 362F 5D00 F20F C3D1 1FD2 589B 4312 91EB 718E BF2A 1E7D B257 77A6

1654 6B2A 0D9B A9D3 668F 19BE F855 6D98 022D E4E2 D017 EA2F 7572 C3B5 1086 480C

3AA6 9CA0 98F7 D0E4 253C C901 55F3 9BF4 F659 D76C

These constants are obtained by using the following Maple program:



readlib(write);

open(sqrt15frc);

printlevel := -1;

Digits := 300;

result := evalf(sqrt(15) - 3);

K := 2 ^ 16;

for i from 1 by 1 while i <= 42 do

nextword := trunc(result * K);

writeln(convert(nextword,hex));

result := frac(result * K);

od;

Figure 3 illustrates the second step involved in the key scheduling. As can

be seen from the �gure, the key scheduling algorithm has similarities with an

iterative cipher, with a major exception being that it is an irreversible process.

G

G

5

5

l,1 l,0l,2Q Q Q

5

l,1 l,0l,2Q Q Q

kb

kb

kb

0

i

l/16

kbi mod  (l/16)

i=l/16, ..., last-1

addition modulo 2

cyclic shift to the left by 5 bits

16

G (X2, X1, X0) = X2 X1     X1 X0       X0 X2

last = 2*r for w=256,  r for w=128, and r/2 for w=64

are constants

Note: all data are of 16 bits
l is the length of a key

Fig. 3. Step 2 in Key Scheduling



2.3 Decryption

As a private key cipher, SPEED uses the same key both for encryption and

decryption. To decrypt a ciphertext C with a key K, the whole process of the

algorithm is reversed, except the key scheduling which remains undisturbed.

To be more precise, the internal operations of each P

i

, i = 1; 2; 3; 4, will be

conducted in reverse order, which, as depicted in Figure 4, results in P

i

or the

inverse of P

i

. The ciphertext C will be processed �rst by P

4

with sub-key K

4

,

followed by P

3

with K

3

, P

2

with K

2

, and �nally P

1

with K

1

. The 
ow of data

in decryption is depicted in Figure 5.

3 On the Round Transform Used in SPEED

The widely used Data Encryption Standard or DES [10] was based on a fun-

damental transform �rst introduced by Feistel [4, 5]. In its original form, the

Feistel transform can be represented by

s(L;R) = (R;L � f(R))

where L and R are binary strings of equal length, � denotes bit-wise XOR and

f is a length preserving function.

Using a similar notation, a round in SPEED can be characterized by

t(B

7

; . . . ; B

2

; B

1

; B

0

) = (B

6

; . . . ; B

1

; B

0

; B

7

+

h(B

6

; . . . ; B

1

; B

0

))

where each B

i

, i = 0; 1; . . . ; 7, is a word of

w

8

bits,

+

denotes addition mod-

ulo 2

w

8

, and h is a function that shrinks 7 input words into one.

The round transform used in SPEED can be regarded as a generalization

of the Feistel transform. In particular, the ideas behind the round transform

can be traced back to theoretical studies of the Feistel transform carried out

by the same author in the late 1980's in [17], where three types of generalized

Feistel transforms were suggested, together with a thorough examination of their

cryptographic properties. In the terminology of [17], the round transform used

in SPEED can be regarded as a \light-weight" version of the inverse of the third

type of generalized Feistel transforms.

The round transform in SPEED can be further generalized to

t(B

k�1

; . . . ; B

2

; B

1

; B

0

) = (B

k�2

; . . . ; B

1

; B

0

; B

k�1

� h(B

k�2

; . . . ; B

1

; B

0

))

for an integer k � 2. Using a technique similar to that for proving Theorem C1

in [17], one can show that the concatenation of r independent rounds of a trans-

form de�ned by the transform yields a so-called super-pseudo-random permu-

tation [8] if and only if r � k + 2. A practical implication of this result is that

at least 10 rounds would be required by SPEED, should each round employ a

function chosen independently at random.

We note that more recently, generalized Feistel transforms have found appli-

cations in a number of one-way hashing algorithms, including MD5 [13], SHS [11],

HAVAL [18] and other closely related algorithms.
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4 Nonlinear Functions Used in SPEED

A function f on V

n

, the vector space of dimension n, is said to be nonlinear if it

is not a�ne. The nonlinearity of f is de�ned as the minimum distance from f

to all the a�ne functions. It is known that the nonlinearity of a function on V

n

is upper-bounded by 2

n�1

� 2

1

2

n�1

. f is said to satisfy the propagation criterion

with respect to a vector in V

n

if complementing an input to f according to the

vector results in the output of f to be complemented 50% of the times. Otherwise

if it results in the output of f to be a constant (0 or 1), the vector is said to

be a linear structure of f . In many cryptographic applications, it is desirable

for a function to be highly nonlinear, to satisfy the propagation criterion for

as many vectors as possible, and to have as few linear structures as possible.

As a detailed discussion on nonlinearity is out of the scope of this paper, the

reader is referred to [15, 16] for relevant concepts as well as various methods for

constructing highly nonlinear functions.

Five nonlinear functions are used in SPEED for bit-wise operations. The �rst

of these functions is used in the key scheduling process, while the other four in

the four internal processes P

1

, P

2

, P

3

and P

4

.

4.1 In the Key Scheduling

The nonlinear Boolean function used in the key scheduling can be represented

by

g(x

2

; x

1

; x

0

) = x

2

x

1

� x

1

x

0

� x

0

x

2



g is a balanced majority function with a nonlinearity of 2, which is the maximum

value that can be achieved by a function on V

3

. It satis�es the propagation crite-

rion with respect to all but one, (1,1,1), non-zero vectors in V

3

. The same function

was previously used in one-way hashing algorithms SHS [11] and MD4 [12].

4.2 In P
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Note that f

1

, f

3

and f

4

, in their original forms, were previously used in a one-

way hashing algorithm called HAVAL [18] (in its Passes 1, 3 and 5 respectively).

f

2

is constructed using a technique shown in Section 8.3 of [16].

The four functions f

1

, f

2

, f

3

and f

4

all have very good propagation or

avalanche characteristics. In particular,

1. f

1

satis�es the propagation criterion with respect to all but one non-zero

vectors in V

7

. The vector where the propagation criterion is not satis�ed is

the only non-zero linear structure of the function.

The same is true for functions f

3

and f

4

.

2. f

2

satis�es the propagation criterion with respect to all but �ve (5) non-zero

vectors in V

7

. In contrast to f

1

, f

3

and f

4

, none of the �ve vectors where

the propagation criterion is not satis�ed is a linear structure of f

2

. Hence f

2

does not have a non-zero linear structure.

In addition,

1. They achieve the maximum nonlinearity 56 on V

7

.

2. They are all balanced.

3. They are inequivalent in the sense that they cannot be converted into one

another via a non-singular a�ne transform on input coordinates. (The in-

equivalence of f

1

, f

3

and f

4

is due to the fact that each has a di�erent

algebraic degree. On the other hand, as f

2

has di�erent propagation charac-

teristics, it is equivalent to none of the other three functions.)

4. All non-zero linear combinations of them are balanced. Among the �fteen

di�erent combinations, nine achieve the highest nonlinearity 56, three achieve

52, and the other three achieve 48.



It should be added that the coordinates of f

1

, f

2

, f

3

and f

4

have been re-

ordered before they take the current forms. Originally the four functions are as

follows:
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The coordinates of the four original functions are re-ordered according to

Table 3 so that the resulting functions ful�ll the requirement that all their non-

zero linear combinations are balanced. These re-orderings have been obtained

through random sampling.
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Table 3. Re-ordering the Coordinates

5 Security of SPEED

There are two ciphers that are structurally related to SPEED. These two al-

gorithms are RC5 [14] and MacGu�n [3]. As MacGu�n round transforms are

based on a very simple re-arrangement of the substitution boxes (S-boxes) used

in DES, SPEED is closer to RC5 than to MacGu�n.

Although SPEED and RC5 share the same feature that both ciphers support

three variable parameters, namely data length, key length and the number of

rounds, there are two aspects that di�erentiate the former from the latter. First,

the key scheduling procedures of the two ciphers bear no resemblance. Second,

SPEED employs a Boolean function with the maximum nonlinearity in each

round, alone with a data-dependent cyclic shift. In contrast, a data-dependent

cyclic shift is the only nonlinear operation involved in a round in RC5.

In [6], Kaliski and Yin have presented convincing evidence which suggests

that RC5 be secure against both linear and di�erential attacks if the number of

(double) rounds in RC5 is 12 or more. (See also a re�ned analysis by Knudsen

and Meier [7].)



Figure 6 shows a (double) round in RC5 which involves two cyclic shifts and

achieves a mixing e�ect in that both output words are a mixture of both input

words. As SPEED has eight words in its input and output data, eight rounds are

required to achieve a similar mixing e�ect, namely each output word is a func-

tion of all eight input words. Therefore, structurally a r-round version of SPEED

roughly corresponds to a

r

8

-(double) round version of RC5. Due to the use of

maximally nonlinear functions in SPEED, we expect that for r � 32, SPEED

is at least as secure as a

r

8

-(double) round RC5. The reader is invited to exam-

ine the security of SPEED against all attacks, including linear and di�erential

cryptanalysis.

BA

cyclic shift to the left by a variable number of bits

A B

B

B

B

B

B

(determined by the lower bits of B)

is an  array of 2*(r+1) round keys

A B

S[2*i]

S[2*i+1]

S

Fig. 6. A (Double) Round in RC5

Table 1 suggests various possible combinations of the parameters w, ` and r

that would provide adequate security for commercial applications.

6 Throughput and Compactness of SPEED

It can be seen from Figure 2 that each round involves the following operations:



1. A nonlinear bit-wise operation on 7 words. The exact time for executing it is

determined by the complexity of the nonlinear function, and more critically,

by the number of fast hardware registers within a CPU which are directly

available to a cryptographic application that employs the cipher. The more

hardware registers the CPU has, the faster the operation.

2. Two cyclic shift operations. On most machines, they are executed quickly,

independently of the number of bits to be cyclically shifted.

3. Two additions modulo 2

w

8

. The one which is not shown in Figure 2 is used

for �nding out the number of bits for the output of the bit-wise operation

to be cyclically shifted.

The key scheduling involves additions, bit-wise nonlinear Boolean operations

and rotations, each (last �

`

16

) times.

A straightforward implementation of SPEED in the programming language

C has been carried out. Table 4 shows the throughput (the number of bits en-

crypted/decrypted per unit of time) of the implementation on a Sun UltraSparc 2

Enterprise (200MHz) as well as on a Pentium Pro 180. Both machines run on the

Solaris 2.5.1 operating system. On the UltraSparc the CC command calls Sparc-

Compiler C++ 4.1, while on the Pentium it calls ProCompiler C++ 3.01. The

throughput indicators have all been obtained for a situation where the key sched-

ule is called only once. The table clearly shows that when the number of rounds

are the same, 256-bit SPEED is twice as fast as 128-bit SPEED, and four times

as fast as 64-bit SPEED. For comparison, the throughput of the IDEA cipher

has also been listed at the bottom of the table.

As the nonlinear Boolean operation in each round of SPEED involves seven

words, increase in the throughput of SPEED can be dramatic when it is made

parallel by hardware. In addition, pipe-line processing, and more signi�cantly,

partial parallel execution of up to six consecutive rounds can be implemented

by hardware. This can be seen from the fact that part of the nonlinear Boolean

operation in the second round, which is not determined by the outcome of the

�rst round, can be carried out while the �rst round is being executed. Under

a conservative assumption that hardware implementation can be 20 times as

fast as its software counterpart on a Sun UltraSparc (200MHz), the throughput

of (256; `; 64)-SPEED, would be boosted to 966 megabit/second. Such a high

throughput would be adequate even for applications on future gigabit networks.

Finally, as indicated by the straightforward coding of the cipher in the pro-

gramming language C, SPEED is suitable for compact implementation either by

software or hardware. In particular, when compiled using `gcc -O2' on the Ul-

traSparc machine, the object code for the C implementation occupies less than

3 kilo-bytes. Incidentally, this coincides with the size of the object code of a

straightforward implementation of the IDEA cipher by R. De Moliner, also in

the programming language C.



Instances of throughput (megabits/second)

SPEED on UltraSparc 200 on Pentium Pro 180

gcc CC gcc CC

(256; `; 48)-SPEED 44.91 48.30 27.23 27.83

(256; `; 64)-SPEED 34.13 36.57 18.96 20.81

(256; `; 80)-SPEED 27.83 29.77 15.33 16.52

(256; `; 96)-SPEED 23.06 24.58 12.84 13.69

(128; `; 48)-SPEED 21.33 24.62 12.43 10.41

(128; `; 64)-SPEED 16.20 18.55 9.48 7.71

(128; `; 80)-SPEED 12.93 14.88 7.62 6.15

(128; `; 96)-SPEED 10.85 12.55 6.37 5.12

(64; `; 64)-SPEED 8.00 9.28 4.74 5.38

(64; `; 80)-SPEED 6.46 7.44 3.83 4.32

(64; `; 96)-SPEED 5.42 6.27 3.22 3.56

IDEA 7.75 16.30 13.64 9.38

(1) Compilers and options:

`gcc -O2' on both machines,

`CC -fast -xO4 -xtarget=ultra' on UltraSparc, and

`CC -fast -xO4 -pentium' on Pentium

(2) IDEA is tested using a package written by R. De Moliner.

Table 4. Throughput of SPEED (and IDEA)

7 Using SPEED in One-Way Hashing

SPEED is a promising candidate for digitally �nger-printing or one-way hashing

a message of arbitrary length. The length of a �nger-print can be up to w = 256

bits. It is expected that it is practically infeasible to �nd two or more di�erent

messages that have the same �nger-print.

Let ` = 256 and w be an integer larger than or equal to the required number

of bits in a �nger-print. For the sake of e�ciency, r may be chosen from between

32 and 48. For each message M to be hashed, we attach to the end of M three

�elds. The �rst �eld starts with a bit 1 which is followed by zero or more bit

0's so that the length (in bits) of the now-expanded message is 184 modulo 256.

The second �eld has 64 bits indicating the length of M , i.e., the number of bits

in M . And �nally, the third �eld consists of 8 bits which indicate the required

number of bits in the �nal �nger-print. In what follows it will become clear that

since the three �elds are attached to the end of M , the operation does not have

to be carried out until hashing the last block (of 256 bits or less) in M . This is

useful in such a situation as when the length of M is not known beforehand.

Now denote by M

n�1

;M

n�2

; . . . ;M

0

the padded message, where each M

i

consists of 256 bits. The �nger-print of the message is obtained in the following



way:

D

0

= 0;

D

i+1

= D

i

+ SPEED

M

i

(D

i

); i = 0; 1; . . . ; n� 1:

The �nger-print of the original message M is represented by the desired number

of bits in the right hand side of D

n

.

Note that in the calculation, SPEED

M

i

(D

i

) should be interpreted as scram-

bling D

i

with M

i

as a key, and the summation is word-wise addition modulo

2

w

8

.

8 Using SPEED in Pseudo-Random Number Generation

As a block cipher, SPEED can serve as a cryptographically strong pseudo-

random number generator when used in the output feedback mode (OFB).

Another simple way to generate cryptographically strong pseudo-random

numbers is based on the observation that if SPEED is a strong cipher, then

it acts as a pseudo-random function which produces w = 64, 128 or 256 pseudo-

random bits per application of the algorithm. Let S be a random seed of 256

bits. Assume that IC is a w-bit initial constant value. Then

SPEED

S

(IC + i); i = 0; 1; 2; . . . ;

de�nes a pseudo-random string that can be used in cryptographic applications.

Note that IC + i should be interpreted as IC + i modulo 2

w

.
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Certi�cation Data for SPEED

Data are represented in the hexadecimal form. The byte order used in showing

the data is as follows:

the most signi�cant byte � � � � � � the least signi�cant byte

SPEED_DATA_LEN = 64, SPEED_KEY_LEN = 64, SPEED_NO_OF_RND = 64

key = 00 00 00 00 00 00 00 00

plaintext = 00 00 00 00 00 00 00 00

ciphertext = 2E 00 80 19 BC 26 85 6D

SPEED_DATA_LEN = 128, SPEED_KEY_LEN = 128, SPEED_NO_OF_RND = 128

key = FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

plaintext = FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

ciphertext = 6C 13 E4 B9 C3 17 15 71 AB 54 D8 16 91 5B C4 E8

SPEED_DATA_LEN = 256, SPEED_KEY_LEN = 256, SPEED_NO_OF_RND = 256

key = 60 5F 5E 5D 5C 5B 5A 59 58 57 56 55 54 53 52 51

50 4F 4E 4D 4C 4B 4A 49 48 47 46 45 44 43 42 41

plaintext = 1F 1E 1D 1C 1B 1A 19 18 17 16 15 14 13 12 11 10

0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00

ciphertext = 3D E1 6C FA 9A 62 68 47 43 4E 15 74 69 3F EC 1B

3F AA 55 8A 29 6B 61 D7 08 B1 31 CC BA 31 10 68

This article was processed using the L

a

T

E

X macro package with LLNCS style


