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1 Introduction

In the physical realm, the new U.S. $100 bill is an example of high-grade security.

Forgery of even a single bill seems to require a huge expenditure to get the

necessary printing plates, paper, ink, and manpower. By contrast, it is much

easier to forge a coin, especially if it only needs to be good enough to fool a

vending machine. This is a good security strategy, since it tailors the security

of a product to be commensurate with the risks involved. Lightweight security

can be adequate for small risks, especially when (as with coins versus bills)

lightweight security is cheaper and easier to provide.

In the virtual realm, an RSA digital signature is an example of high-grade

security. Forgery of even a single signature, without knowing the private key,

seems to require a huge computational e�ort. This makes digital signatures a

useful tool for a wide variety of security-critical applications. However, as with

$100 bills, digital signature systems can be complicated to deploy, and expensive

to maintain. For applications where the risks are not so great, it is reasonable

to look for alternative security measures that are easier to deploy, even if they

don't provide high-grade security. A lightweight security mechanism in the vir-

tual realm, where each individual forgery requires a modest but non-trivial com-

putational e�ort, can be adequate for preventing large-scale fraud in practical

applications. A number of \micro-payment" schemes have been designed in this

manner (beginning with [7]).

Note also that lightweight and heavyweight security mechanisms can be com-

bined. In the physical world, one's valuables might be protected by a cheap lock

on the front door, and a burglar alarm, and recorded serial numbers, and the

threat of arrest. A similar blend of security mechanisms can discourage attacks

in the virtual realm.

In this work we suggest a new mechanism for providing lightweight security:

the compact metering scheme. We also suggest a basic application for its use:

metering the popularity of web sites. This application may be una�ected by

fraud on a small-scale, since only a crude and relative measure of site popularity

may be needed for purposes such as the pricing of advertisements and payment

of royalties. Prior to our work, an application such as web site metering could

only be protected through the use of heavyweight security mechanisms (such

as digital signatures), or by using on-line trusted authorities. Our lightweight

security mechanism can be used on its own, or combined with other security

mechanisms to increase resistance to fraud.



1.1 Uses of Auditable Metering within the WWW

The growing popularity of the Internet and the World Wide Web (WWW) is

driving various applications, several of which are commercially oriented. One

such commercial application of the WWW is advertising. The di�culty of us-

ing the WWW for advertising, however, is the need for securely metering the

distribution circulation to accurately price the advertisements.

The absence of secure metering greatly impacts advertising utilization. Ac-

cess data is usually collected at the server site, which has control over the col-

lecting process as well as over stored data. Since the owner of the server can

charge higher rates for advertisements by showing a higher number of visits, the

owner has a strong economic incentive to in
ate the number of visits. The owner

could accomplish this by manipulating any unsecured metered data stored on

the server.

Alternatively, any individual could fraudulently increase the number of visits

to a web site using a \robot" program, which is con�gured to generate visits to

a web site. The amount of visits is theoretically limitless.

In view of the above, it is clear that a need exists for accurately and securely

metering visits to a web site. Metering visits to web sites is also necessary for

commercial applications other than advertising. For example, customers may

choose to connect to the WWWthrough an Internet Service Provider (ISP). ISPs

typically charge their customers for connections to the WWW by the hour. An

ISP may enhance service to customers by having sites referred to as partners that

provide information on the WWW and assume the charge of clients connections

to such sites. This would be similar to companies which assume the phone charges

of calls to \800 numbers" in the U.S. A secure metering scheme would enable

ISPs to record the number and duration of client visits that pass through the

ISP to the partner site, and use this record to reverse-charge the partner site.

Although our scheme is presented in the context of metering the WWW, it

can be used in any client-server setting that is amenable to automatic metering.

1.2 Technical Approach

Metering security in the WWW framework could be achieved by several known

techniques. Employing standard cryptographic methods to keep self-authenticating

records of interactions on the WWW would be secure, and is enabled by some

existing extensions to the WWW protocols, such as S-HTTP [10] and SSL [8].

These methods are clearly advantageous in o�ering a high level of auditability

and non-repudiability. However, authenticating all clients has the drawback that

all clients must register to obtain authentication keys. Not only is this a heavy

administrative burden, but it leads to solutions that threaten the clients' privacy.

A third party census may be used to independently provide measurements

on web activity, as o�ered by the Audit Bureau of Circulations (ABC). Using

this scheme, activity can be monitored by an objective authority, which can then

certify the measured data and prevent the possibility of manipulating it by a



web publisher. The obvious problems with this method are the dependence on

a central authority, and the deviation of census data from real activity.

We o�er an alternative approach to metering, that does not rely on client

authentication or on a third party. We start with a notion of a timing scheme,

with the following properties:

1. Timing schemes can be computed with increasingly large e�orts invested

(incremental).

2. The output of a timing scheme need not grow with the amount of e�ort

spent (compact).

3. The e�ort spent can be e�ciently veri�ed from the output with high degree

of con�dence, where by e�ciently we mean with considerably less e�ort than

re-computing the timing function itself (auditable).

We use the di�culty of computing a timing scheme to leverage the security

of a metering method by involving each client in computing the timing function

(for some given input) upon visiting a web site, and recording the result of the

computation along with the record of the visit. Thus, to forge client visits requires

a known investment of computational resources, which grows proportionally to

the amount of fraud, and is infeasible for visit counts commonly found in the

WWW.

The incremental nature of the timing function is used to create a new measure

of client accesses, namely their duration. The term \visit" as used herein refers

to the elapsed time a client examines content from a particular web site. Note

that, as a timing function will be executed at the client's site, visit duration is

indeed well de�ned despite that the WWW visiting protocol (HTTP) is stateless.

A visit duration within the WWW framework is more accurately de�ned in

Section 3. Our metering scheme engages the client in computing the timing

function incrementally throughout the duration of its visit, and thus, the output

captures the duration of the visit.

Dwork and Naor de�ned a related notion of a pricing function [6], whose

computation requires a known lower-bound investment of resources. They use

pricing functions for preventing the mass utilization of electronic mail. Pricing

functions are not incremental, and cannot be utilized (compactly) to measure

the duration of visits. Cai et al. de�ne the related notion of uncheatable bench-

mark [4, 1] for e�ciently verifying claims of computational power. Some of the

methods proposed for uncheatable benchmarking can be used incrementally. The

methods used both in pricing functions and uncheatable benchmarks contain a

trapdoor that allows e�cient computation of the results. If used in the context

of auditable metering, a trapdoor could be used to allow e�cient and de�nite

veri�cation of the results by an auditor, but would also provide the auditor

with the means to forge results en masse. The scheme we o�er below has means

for e�cient probabilistic auditing (veri�cation) that does not su�er from this

drawback.



1.3 Organization of Paper

The rest of this paper is organized as follows. In Section 2, we give models, de�-

nitions, and constructions of timing schemes. Our auditable metering protocols

are described in Section 3. Implementation issues are discussed in Section 4, and

we discuss possible extensions in section 5. Applications are given in Section 6,

and some caveats are raised in Section 7.

2 Timing Schemes

A timing scheme consists of two components: The �rst part is a timing function,

which is an incremental computation performed by a client and whose result

is sent back to the server and logged there. The second part is an e�cient

auditing function that veri�es the computation time spent producing the logged

result. Computation time is expressed in terms of some agreed upon unit of

computation, whose complexity is well-analyzed.

At a high level, a timing function is a computation that requires a known

amount of time to compute certain outputs. This function can be computed

with a reasonable investment of time by any client, but this investment of time

is the only known way of producing the result. The basis of such a computation

is some grain of computation h whose computational complexity is understood.

In practice we can take h to be a well-known hash function such as MD-5 or

SHA (producing 128 bit hash values). The timing function combines multiple

applications of h to produce an output, such that the number of times that

h computes represents the known required e�ort. Let f

k

(x) denote a timing

function requiring k applications of h. We do not need to a-priori set k: The

scheme is incremental, i.e., there is a way to move from f

k

(x) to f

k+1

(x) by

applying h once. An important property of the scheme is that the output of the

computation is of constant size, regardless of the number of h applications, and

thus not all h results can be sent. We call this property compact.

For example, a timing scheme can be based on a simple min construction

as follows. Let h be a hash function whose output is uniformly distributed over

the domain [0 :: 2

128

� 1] (e.g., take h to be MD-5). Evaluate h at x

1

; : : : ; x

k

,

where x

i

= h(x

i�1

), x

0

= x:r (concatenation) for a random seed r, and return

the (x

i

; h(x

i

)) pair for which h(x

i

) is minimized, along with the number k of

h evaluations performed. Note that this function is incremental (extending the

evaluation of f

k

requires one additional evaluation of h) and compact (since one

pair of values is returned no matter how large k is

1

).

The second part of a timing scheme is an e�cient auditing function, that

veri�es the number k of claimed h applications probabilistically. In the example

above, a good way to test an output record is to observe that for any k

0

< k,

the probability p

k

0

of randomly sampling a value less than y within the range

1

We ignore the size of k itself, which can be represented by 128 bits for all practical

values of k.



[0 :: N � 1] using k

0

samples (in our case, we take N = 2

128

), is bounded by

8k

0

� k : p

k

0

� 1�

�

N � y

N

�

k

:

Therefore, for any desired probability level � > 0, p

k

� � when k � ln(1 �

�)=ln(

N�y

N

), and thus any k within this range will be accepted by the auditor for

this required level of guarantee. It should also be possible, with a more sophis-

ticated test, to accept or reject a collection of timing records simultaneously.

Another method for auditing the output of a timing function is by estimat-

ing a most likely number k

0

of h applications producing this output. For the

construction above, the maximum likelihood estimator is k

0

= �1=ln(

N�y

N

).

We note that a foolproof method of verifying the number of h applications

for a particular output is possible, simply be repeating the entire computation.

Due to its cost, this method can be applied selectively, e.g., for those records for

which the e�cient veri�cation method fails, or randomly.

3 Auditable Metering with a Timing Scheme

The metering protocol involves two parties, a client and a meter. We assume

that clients and meters engage in a external visiting protocol by which clients

access meters for certain durations. Our assumptions about the (opaque) vis-

iting protocol borrow from the HTTP protocol [2], which motivated our work.

However, other protocols may suit our abstract representation as well.

3.1 Assumptions about Meters and Clients

Let m denote a meter and c a client. m and c communicate via a reliable FIFO

communication channel. We assume that m and c engage in a visiting protocol

(whose details are opaque), that generates two events:

1. A start-visit at m signals the beginning of the visiting protocol at m, and

precedes any information sent from m to c.

2. An end-visit event at c signals the termination of the visiting protocol at c.

Following the end-visit event, c does not send any further information to m

within the visiting protocol.

Note that an end-visit event occurs at the client, hence this formulation can

be realized in the (stateless) HTTP protocol. We assume that the environment

supports dynamic deployment of programs fromm to c, with the following prop-

erties: m is capable of sending an executable program p to c, which c may then

choose to execute. c may send a termination signal to p as it executes, or can

terminate it (ungracefully). Programs deployed from m to c may utilize compu-

tational resources and may communicate back and forth with m. We reiterate

that these assumptions are practical, and are currently achievable in the WWW

framework.



3.2 Metering Protocol

The purpose of the metering protocol is to maintain at m a record of c's visit,

expressing the duration of the visit, i.e., the time between the start-visit and the

end-visit events. For a meter m to record the duration of a client c's visit with

a timing scheme, they engage in the protocol given in Figure 1.

1. Initiation: When m incurs a start-visit event by c, m deploys a program p that,

when executed, computes f during its runtime and, when signaled to stop, sends

back the result to m and terminates. p (equivalently, f) is initiated at m prior to

deployment with the following cookie:

<m; ts>;

where ts is a unique identi�er (timestamp) used by m, and with the property that

ts

2

6= ts

1

for any two distinct cookies <m; ts

1

>, <m; ts

2

>, .

The program p may contain a bounded computation of f or run endlessly; In the

former case, if termination is reached then the computed result is sent back to m.

In the latter case, the program terminates by a stop signal (see below), or when

destroyed.

2. Execution: When a client c receives p it starts executing it.

3. End: When a client c incurs an end-visit event it signals p to stop. If p is still

running it responds to this signal by terminating the computation of f and sending

the computed result back to m.

Fig. 1. The metering protocol

3.3 Auditing Procedure

A visit record has the form rec = [m; ts; r; z] where z = f(m:ts) and r is a unique

random seed chosen by the client. An auditor tests each record and accepts or

rejects it according to the desired threshold of acceptance. Optionally, an auditor

may selectively re-compute the timing function of certain records for guaranteed

assurance, e.g., for those records failing the test.

The following technique can reduce the number of visit records that need

to be stored at a meter site. Only keep those visit records which satisfy some

predicate P . The predicate should have a predictable success rate, but be hard to

predict for individual inputs, e.g.,P

h;q

(rec) is true if and only if h(rec) mod q = 0.

The auditor veri�es that all stored timing records satisfy the predicate, and

expands the timing interpretation according to the success rate (e.g., multiply

by q for P � P

h;q

).



4 Implementation

We have implemented webmeter, a prototype metering tool that can monitor a

web site. Figure 2 depicts the structure of webmeter. The tool consists of two

modules:

proxy: A proxy module intercepts HTTP tra�c to and from the designated

web-site, and appends a metering applet to the body of each content leaving

the web-site. The applet code is written in Java, and is deployed to the client

after the applet is sent, as part of the standard HTTP protocol. The proxy

module may be placed on the same host as the web server and hide the real

server from the world, or it can be placed elsewhere on the communication

path between clients and the server.

log keeper: A log keeper accepts the results sent by metering applets and keeps

them on stable storage.

web server

log keeper

proxy

webmeter

(3)

(1)

(2)

client

(1) webmeter \hides" web server. (2) webmeter appends a metering applet to

contents. (3) metering applet at client sends result to log keeper.

Fig. 2. The webmeter metering tool

5 Discussion

The metering protocol uses the di�culty to compute visit records to leverage

auditability. Our timing scheme requires an investment of Thus, the amount of

possible fraud is proportional to the amount of computational resources invested

in it.

In addition to verifying the correctness of the timing scheme values in a

meter, we suggest strengthening the auditing of our metering data by several

accompanying mechanisms.

Network Authentication: For a visit record to be accepted by an auditor,

the meter m must be involved in the generation of the cookie timestamp



ts. This hand-shake protocol prevents a batch of visit records being forged

o�-line, and implies that visit records represent real visits made at the me-

ter. A meter can verify the origin of a visit at the network level to some

extent. One method of achieving a high degree of assurance is to use crypto-

graphically secure authentication codes, as supported in various extensions

to the WWW protocols (e.g., S-HTTP [10], SSL [8]), to authenticate origins.

Another, more manageable way, is to position the meter on the gateway en-

tering an organization's network and �lter out visits generated from within

the network. Most known routing tricks can be prevented by a meter thus

positioned (see [5]). These types of network veri�cations prevent some small

number of clients frommasquerading as a larger and/or broader set of clients.

Thus almost all visit records in the log �le will represent visits by external

clients.

Checkpoints: An auditor can use the timestamped cookies (used for initializing

the timing function f) to limit the rate of possible fraud by preventing

the mass-generation of fraudulent visit records o�-line. This can be done

in the following way: An auditor designates epochs at which it requests a

checkpoint of the meter log, and re-initializes the timestamp value for the

next epoch. Any cookies produced during an epoch must be utilized within

this epoch, and later become unusable. Thus, for example, computations

performed during o�-peak hours cannot produce fraudulent visit records for

peak hours.

Census: An independent third party may perform a census of web activity

concerning any particular web site, given any means at its disposal. The

records held by the meter should agree with the census approximations.

Third party: On-line monitoring by a third party can be required selectively

for some pre-determined portion of the visits. This could be done by trans-

parently deferring designated requests to the third party site. Selection of

visits should be done according to a deterministic predicate with a known

success rate, applied on the cookies. In this way, the expected number of

visits in which the third party is involved would be known, approximately,

as a portion of the total number of logged visits at the web server.

6 Applications

Many applications may bene�t from auditability of web metering. We list some

possibilities here.

The primary application motivating our work is the metering of a web site

to measure its popularity. Our metering scheme has the advantages of being

auditable, as well as accounting every visit to pages containing contents from

the web site, even in the case of repeated visits to cache proxy servers.

The incremental timing scheme is novel in providing a measure of the dura-

tion of client accesses to a server. A pro�le of the times spent with a particular

content can be of enormous value to content service providers, as well as to ad-

vertisers seeking maximumexposure. Information on the time spent viewing the



contents of a document from a web site is valuable for pricing advertisements

accompanying the document.

We also propose a novel application called 1-800-HTTP: An Internet Ser-

vice Provider (ISP) used for connecting private clients to the WWW charges

clients for the duration of usage (typically, after some initial quota of 
at-rate

usage). This charge may prevent potential customers from browsing sites freely.

An ISP may enhance its service to clients by partnering with certain commercial

sites and reverse the charges of connection time spent by clients visiting the

partner sites. The motivation to such a paradigm is similar to that of compa-

nies o�ering `800' service phone numbers in the U.S., that reverse the phone

charges of customer calls. The scheme we suggest allows metering such visits

and reversing the charges for them.

In all of the examples above, the auditable metering scheme was used to

prevent (mass) forgery by the meter. Forging mass (and diverse) visits is just

as hard with our scheme for the client. This property is useful when metering is

employed for royalty payments on copyright material, since it inhibits owners of

the copyrights from in
ating their royalties.

7 Caveats

The incremental timing scheme uses the di�culty of computing the timing func-

tion to leverage auditability. This di�culty (likewise, the computation time in-

vested) may di�er signi�cantly between di�erent clients. At one extreme, clients

may be smart Internet terminals with very limited computational power, and

at the other extreme, clients may be top of the line workstations. Thus, the

timing scheme should be tuned carefully to the environment. When metering is

deployed by an ISP (e.g., for reverse charging), this problem may be alleviated

since an ISP has direct link into the client's environment.

Currently, dynamic deployment of software is supported in the Internet only

for Java programs running on a Java virtual machine. Experience with com-

putationally intensive Java applications indicates that it is ine�cient [3]. This

suggests that a forger can gain a signi�cant advantage, even on a machine of

comparable power, by coding the timing function in a more suitable language.

We believe that the Java environment will mature in the future, will become

e�cient, and will include accompanying mathematical libraries (such as Cryp-

toLib [9]), enabling e�cient cryptographic software in Java.

Clients can avoid being metered in our approach in many ways, e.g., by

disabling Java. This will be detectable by the meter after the client has �nished

its visit, and of no real bene�t to the client. The future will tell whether Java (or

a similar mechanism for mobile code) will be largely accepted by WWW users

or not.
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